/usr/include/linbox/solutions/charpoly.h is in liblinbox-dev 1.1.6~rc0-4.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 | /* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/solutions/charpoly.h
* Copyright (C) 2005 Clement Pernet
*
* Written by Clement Pernet <clement.pernet@imag.fr>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifndef __CHARPOLY_H
#define __CHARPOLY_H
#include "linbox/solutions/methods.h"
#include "linbox/util/debug.h"
#include "linbox/field/field-traits.h"
#include "linbox/blackbox/blas-blackbox.h"
#include "linbox/matrix/blas-matrix.h"
#include "linbox/algorithms/blas-domain.h"
#ifdef __LINBOX_HAVE_GIVARO
// BBcharpoly without givaropolynomials is not yet implemented
#include "linbox/algorithms/bbcharpoly.h"
#endif
// Namespace in which all LinBox library code resides
namespace LinBox
{
// for specialization with respect to the DomainCategory
template< class Blackbox, class Polynomial, class MyMethod, class DomainCategory>
Polynomial &charpoly ( Polynomial &P,
const Blackbox &A,
const DomainCategory &tag,
const MyMethod &M);
//error handler for rational domain
template <class Blackbox, class Polynomial>
Polynomial &charpoly (Polynomial& P,
const Blackbox& A,
const RingCategories::RationalTag& tag,
const Method::Hybrid& M)
{
throw LinboxError("LinBox ERROR: charpoly is not yet define over a rational domain");
}
/** \brief ...using an optional Method parameter
\param P - the output characteristic polynomial. If the polynomial
is of degree d, this random access container has size d+1, the 0-th
entry is the constant coefficient and the d-th is 1 since the charpoly
is monic.
\param A - a blackbox matrix
Optional \param M - the method object. Generally, the default
object suffices and the algorithm used is determined by the class of M.
Basic methods are Method::Blackbox, Method::Elimination, and
Method::Hybrid (the default).
See methods.h for more options.
\return a reference to P.
*/
template <class Blackbox, class Polynomial, class MyMethod>
Polynomial &charpoly (Polynomial & P,
const Blackbox & A,
const MyMethod & M){
return charpoly( P, A, typename FieldTraits<typename Blackbox::Field>::categoryTag(), M);
}
}
namespace LinBox
{
/// \brief ...using default method
template<class Blackbox, class Polynomial>
Polynomial &charpoly (Polynomial & P,
const Blackbox & A)
{
return charpoly (P, A, Method::Hybrid());
}
// The charpoly with Hybrid Method
template<class Polynomial, class Blackbox, class DomainCategory>
Polynomial &charpoly (Polynomial &P,
const Blackbox &A,
const DomainCategory &tag,
const Method::Hybrid &M)
{
// not yet a hybrid
//return charpoly(P, A, tag, Method::Blackbox(M));
return charpoly(P, A, tag, Method::BlasElimination(M));
}
// The charpoly with Hybrid Method
template<class Polynomial, class Domain, class DomainCategory>
Polynomial &charpoly (Polynomial &P,
const SparseMatrix<Domain> &A,
const DomainCategory &tag,
const Method::Hybrid &M)
{
// not yet a hybrid
return charpoly(P, A, tag, Method::Blackbox(M));
}
// The charpoly with Hybrid Method
template<class Polynomial, class Domain, class DomainCategory>
Polynomial &charpoly (Polynomial &P,
const DenseMatrix<Domain> &A,
const DomainCategory &tag,
const Method::Hybrid &M)
{
// not yet a hybrid
return charpoly(P, A, tag, Method::BlasElimination(M));
}
// The charpoly with Elimination Method
template<class Polynomial, class Blackbox, class DomainCategory>
Polynomial &charpoly (Polynomial &P,
const Blackbox &A,
const DomainCategory &tag,
const Method::Elimination &M)
{
return charpoly(P, A, tag, Method::BlasElimination(M));
}
/** @brief Compute the characteristic polynomial over <bold>Z</bold><sub>p</sub>
*
* Compute the characteristic polynomial of a matrix using dense
* elimination methods
* @param P Polynomial where to store the result
* @param A Blackbox representing the matrix
*/
template < class Polynomial, class Blackbox >
Polynomial& charpoly (Polynomial & P,
const Blackbox & A,
const RingCategories::ModularTag & tag,
const Method::BlasElimination & M)
{
if (A.coldim() != A.rowdim())
throw LinboxError("LinBox ERROR: matrix must be square for characteristic polynomial computation\n");
BlasBlackbox< typename Blackbox::Field > BBB (A);
BlasMatrixDomain< typename Blackbox::Field > BMD (BBB.field());
return BMD.charpoly (P, static_cast<BlasMatrix<typename Blackbox::Field::Element> >(BBB));
}
}
// #if 0
#if defined(__LINBOX_HAVE_NTL) && defined(__LINBOX_HAVE_GIVARO)
#include "linbox/algorithms/cia.h"
namespace LinBox {
/** @brief Compute the characteristic polynomial over {\bf Z}
*
* Compute the characteristic polynomial of a matrix using dense
* elimination methods
* @param P Polynomial where to store the result
* @param A \ref{Blacbox} representing the matrix
*/
template < class Polynomial, class Blackbox >
Polynomial& charpoly (Polynomial & P,
const Blackbox & A,
const RingCategories::IntegerTag & tag,
const Method::BlasElimination & M)
{
if (A.coldim() != A.rowdim())
throw LinboxError("LinBox ERROR: matrix must be square for characteristic polynomial computation\n");
GivPolynomial<typename Blackbox::Field::Element> Pg;
return P = cia (Pg, A, M);
}
/** Compute the characteristic polynomial over {\bf Z}
*
* Compute the characteristic polynomial of a matrix, represented via
* a blackBox.
*
* @param P Polynomial where to store the result
* @param A \ref{Blacbox} representing the matrix
*/
template < class Polynomial, class Blackbox/*, class Categorytag*/ >
Polynomial& charpoly (Polynomial & P,
const Blackbox & A,
const RingCategories::IntegerTag & tag,
const Method::Blackbox & M)
{
if (A.coldim() != A.rowdim())
throw LinboxError("LinBox ERROR: matrix must be square for characteristic polynomial computation\n");
GivPolynomial<typename Blackbox::Field::Element> Pg;
return P = blackboxcharpoly (Pg, A, tag, M);
}
#else
#include "linbox/field/modular.h"
#include "linbox/algorithms/cra-domain.h"
#include "linbox/algorithms/cra-full-multip.h"
#include "linbox/algorithms/cra-early-multip.h"
#include "linbox/randiter/random-prime.h"
#include "linbox/algorithms/matrix-hom.h"
namespace LinBox {
template <class Blackbox, class MyMethod>
struct IntegerModularCharpoly {
const Blackbox &A;
const MyMethod &M;
IntegerModularCharpoly(const Blackbox& b, const MyMethod& n)
: A(b), M(n) {}
template<typename Polynomial, typename Field>
Polynomial& operator()(Polynomial& P, const Field& F) const {
typedef typename Blackbox::template rebind<Field>::other FBlackbox;
FBlackbox * Ap;
MatrixHom::map(Ap, A, F);
charpoly( P, *Ap, typename FieldTraits<Field>::categoryTag(), M);
integer p;
F.characteristic(p);
//std::cerr<<"Charpoly(A) mod "<<p<<" = "<<P;
delete Ap;
return P;
}
};
template < class Polynomial,class Blackbox >
Polynomial& charpoly (Polynomial & P,
const Blackbox & A,
const RingCategories::IntegerTag & tag,
const Method::Blackbox & M)
{
if (A.coldim() != A.rowdim())
throw LinboxError("LinBox ERROR: matrix must be square for characteristic polynomial computation\n");
commentator.start ("Integer BlackBox Charpoly : No NTL installation -> chinese remaindering", "IbbCharpoly");
RandomPrimeIterator genprime( 26-(int)ceil(log((double)A.rowdim())*0.7213475205));
// typename Blackbox::ConstRawIterator it = A.rawBegin();
// typename Blackbox::ConstRawIterator it_end = A.rawEnd();
// integer max = 1,min=0;
// while( it != it_end ){
// // cerr<<"it="<<(*it)<<endl;
// if (max < (*it))
// max = *it;
// if ( min > (*it))
// min = *it;
// it++;
// }
// if (max<-min)
// max=-min;
// size_t n=A.coldim();
// double hadamarcp = n/2.0*(log(double(n))+2*log(double(max))+0.21163275)/log(2.0);
// ChineseRemainder< FullMultipCRA<Modular<double> > > cra(hadamarcp);
ChineseRemainder< EarlyMultipCRA<Modular<double> > > cra(3UL);
IntegerModularCharpoly<Blackbox,Method::Blackbox> iteration(A, M);
cra.operator() (P, iteration, genprime);
commentator.stop ("done", NULL, "IbbCharpoly");
return P;
}
template < class Polynomial,class Blackbox >
Polynomial& charpoly (Polynomial & P,
const Blackbox & A,
const RingCategories::IntegerTag & tag,
const Method::BlasElimination & M)
{
if (A.coldim() != A.rowdim())
throw LinboxError("LinBox ERROR: matrix must be square for characteristic polynomial computation\n");
commentator.start ("Integer Dense Charpoly : No NTL installation -> chinese remaindering", "IbbCharpoly");
RandomPrimeIterator genprime( 26-(int)ceil(log((double)A.rowdim())*0.7213475205));
// typename Blackbox::ConstRawIterator it = A.rawBegin();
// typename Blackbox::ConstRawIterator it_end = A.rawEnd();
// integer max = 1,min=0;
// while( it != it_end ){
// // cerr<<"it="<<(*it)<<endl;
// if (max < (*it))
// max = *it;
// if ( min > (*it))
// min = *it;
// it++;
// }
// if (max<-min)
// max=-min;
// size_t n=A.coldim();
// double hadamarcp = n/2.0*(log(double(n))+2*log(double(max))+0.21163275)/log(2.0);
// ChineseRemainder< FullMultipCRA<Modular<double> > > cra(hadamarcp);
ChineseRemainder< EarlyMultipCRA<Modular<double> > > cra(3UL);
IntegerModularCharpoly<Blackbox,Method::BlasElimination> iteration(A, M);
cra(P, iteration, genprime);
commentator.stop ("done", NULL, "IbbCharpoly");
return P;
}
#endif
/** Compute the characteristic polynomial over <bold>Z</bold><sub>p</sub>.
*
* Compute the characteristic polynomial of a matrix, represented via
* a blackBox.
*
* @param P Polynomial where to store the result
* @param A Blackbox representing the matrix
*/
template < class Polynomial, class Blackbox/*, class Categorytag*/ >
Polynomial& charpoly (Polynomial & P,
const Blackbox & A,
const RingCategories::ModularTag & tag,
const Method::Blackbox & M)
{
if (A.coldim() != A.rowdim())
throw LinboxError("LinBox ERROR: matrix must be square for characteristic polynomial computation\n");
#ifdef __LINBOX_HAVE_GIVARO
GivPolynomial<typename Blackbox::Field::Element> Pg;
return P = blackboxcharpoly (Pg, A, tag, M);
#else
return charpoly(P, A, tag, Method::BlasElimination());
#endif
}
}
#endif // __CHARPOLY_H
|