This file is indexed.

/usr/include/linbox/solutions/charpoly.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */

/* linbox/solutions/charpoly.h
 * Copyright (C) 2005 Clement Pernet
 *
 * Written by Clement Pernet <clement.pernet@imag.fr>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

#ifndef __CHARPOLY_H
#define __CHARPOLY_H



#include "linbox/solutions/methods.h"
#include "linbox/util/debug.h"
#include "linbox/field/field-traits.h"
#include "linbox/blackbox/blas-blackbox.h"
#include "linbox/matrix/blas-matrix.h"
#include "linbox/algorithms/blas-domain.h"

#ifdef __LINBOX_HAVE_GIVARO
// BBcharpoly without givaropolynomials is not yet implemented
#include "linbox/algorithms/bbcharpoly.h"
#endif
// Namespace in which all LinBox library code resides

namespace LinBox
{

	// for specialization with respect to the DomainCategory
 	template< class Blackbox, class Polynomial, class MyMethod, class DomainCategory>
 	Polynomial &charpoly ( Polynomial            &P, 
 			       const Blackbox        &A,
 			       const DomainCategory  &tag,
 			       const MyMethod        &M);
	

	//error handler for rational domain
	template <class Blackbox, class Polynomial>
	Polynomial &charpoly (Polynomial& P,
			      const Blackbox& A,
			      const RingCategories::RationalTag& tag,
			      const Method::Hybrid& M)
	{
		throw LinboxError("LinBox ERROR: charpoly is not yet define over a rational domain");
	}

        /** \brief  ...using an optional Method parameter
	    \param P - the output characteristic polynomial.  If the polynomial 
	    is of degree d, this random access container has size d+1, the 0-th 
	    entry is the constant coefficient and the d-th is 1 since the charpoly 
	    is monic.
	    \param A - a blackbox matrix
	    Optional \param M - the method object.  Generally, the default
	    object suffices and the algorithm used is determined by the class of M.
	    Basic methods are Method::Blackbox, Method::Elimination, and 
	    Method::Hybrid (the default).
	    See methods.h for more options.
	    \return a reference to P.
	*/
	template <class Blackbox, class Polynomial, class MyMethod>
	Polynomial &charpoly (Polynomial         & P, 
			      const Blackbox     & A,
			      const MyMethod     & M){
		return charpoly( P, A, typename FieldTraits<typename Blackbox::Field>::categoryTag(), M);
	}
}


namespace LinBox
{

	/// \brief ...using default method
	template<class Blackbox, class Polynomial>
	Polynomial &charpoly (Polynomial        & P, 
			      const Blackbox    & A)
	{
		return charpoly (P, A, Method::Hybrid());
	}

	// The charpoly with Hybrid Method 
	template<class Polynomial, class Blackbox, class DomainCategory>
	Polynomial &charpoly (Polynomial            &P, 
			      const Blackbox        &A,
			      const DomainCategory  &tag,
			      const Method::Hybrid  &M)
	{
		// not yet a hybrid
		//return charpoly(P, A, tag, Method::Blackbox(M));
		return charpoly(P, A, tag, Method::BlasElimination(M));
	}

	// The charpoly with Hybrid Method 
	template<class Polynomial, class Domain, class DomainCategory>
	Polynomial &charpoly (Polynomial            &P, 
			      const SparseMatrix<Domain>  &A,
			      const DomainCategory  &tag,
			      const Method::Hybrid  &M)
	{
		// not yet a hybrid
		return charpoly(P, A, tag, Method::Blackbox(M));
	}
	// The charpoly with Hybrid Method 
	template<class Polynomial, class Domain, class DomainCategory>
	Polynomial &charpoly (Polynomial            &P, 
			      const DenseMatrix<Domain> &A,
			      const DomainCategory  &tag,
			      const Method::Hybrid  &M)
	{
		// not yet a hybrid
		return charpoly(P, A, tag, Method::BlasElimination(M));
	}
	
	// The charpoly with Elimination Method 
	template<class Polynomial, class Blackbox, class DomainCategory>
	Polynomial &charpoly (Polynomial                &P, 
			      const Blackbox            &A,
			      const DomainCategory      &tag,
			      const Method::Elimination &M)
	{
		return charpoly(P, A, tag, Method::BlasElimination(M));
	}


	/** @brief Compute the characteristic polynomial over <bold>Z</bold><sub>p</sub>
	 *
	 * Compute the characteristic polynomial of a matrix using dense 
	 * elimination methods

	 * @param P Polynomial where to store the result
	 * @param A Blackbox representing the matrix
	 */
	template < class Polynomial, class Blackbox >
	Polynomial& charpoly (Polynomial                       & P, 
			      const Blackbox                   & A,
			      const RingCategories::ModularTag & tag,
			      const Method::BlasElimination    & M) 
	{ 	
		if (A.coldim() != A.rowdim())
			throw LinboxError("LinBox ERROR: matrix must be square for characteristic polynomial computation\n");
		
		BlasBlackbox< typename Blackbox::Field > BBB (A);
		BlasMatrixDomain< typename Blackbox::Field > BMD (BBB.field());
		return BMD.charpoly (P, static_cast<BlasMatrix<typename Blackbox::Field::Element> >(BBB));
	}

}

//	#if 0
#if defined(__LINBOX_HAVE_NTL) && defined(__LINBOX_HAVE_GIVARO)

#include "linbox/algorithms/cia.h"
namespace LinBox {
	/** @brief Compute the characteristic polynomial over {\bf Z}
	 *
	 * Compute the characteristic polynomial of a matrix using dense 
	 * elimination methods

	 * @param P Polynomial where to store the result
	 * @param A \ref{Blacbox} representing the matrix
	 */


	template < class Polynomial, class Blackbox >
	Polynomial& charpoly (Polynomial                       & P, 
			      const Blackbox                   & A,
			      const RingCategories::IntegerTag & tag,
			      const Method::BlasElimination    & M) 
	{
		if (A.coldim() != A.rowdim())
			throw LinboxError("LinBox ERROR: matrix must be square for characteristic polynomial computation\n");
		GivPolynomial<typename Blackbox::Field::Element> Pg;
		return P = cia (Pg, A, M);
	}

	/** Compute the characteristic polynomial over {\bf Z}
	 *
	 * Compute the characteristic polynomial of a matrix, represented via 
	 * a blackBox.
	 * 
	 * @param P Polynomial where to store the result
	 * @param A \ref{Blacbox} representing the matrix
	 */
	template < class Polynomial, class Blackbox/*, class Categorytag*/ >
	Polynomial& charpoly (Polynomial                       & P, 
			      const Blackbox                   & A,
			      const RingCategories::IntegerTag & tag,
			      const Method::Blackbox           & M)
	{
		if (A.coldim() != A.rowdim())
			throw LinboxError("LinBox ERROR: matrix must be square for characteristic polynomial computation\n");
		GivPolynomial<typename Blackbox::Field::Element> Pg;
		return P = blackboxcharpoly (Pg, A, tag, M);
	}


#else


#include "linbox/field/modular.h"
#include "linbox/algorithms/cra-domain.h"
#include "linbox/algorithms/cra-full-multip.h"
#include "linbox/algorithms/cra-early-multip.h"
#include "linbox/randiter/random-prime.h"
#include "linbox/algorithms/matrix-hom.h"

namespace LinBox {
	template <class Blackbox, class MyMethod>
	struct IntegerModularCharpoly {       
		const Blackbox &A;
		const MyMethod &M;
		
		IntegerModularCharpoly(const Blackbox& b, const MyMethod& n) 
			: A(b), M(n) {}
		
		template<typename Polynomial, typename Field>
		Polynomial& operator()(Polynomial& P, const Field& F) const {
			typedef typename Blackbox::template rebind<Field>::other FBlackbox;
			FBlackbox * Ap;
			MatrixHom::map(Ap, A, F);
			charpoly( P, *Ap, typename FieldTraits<Field>::categoryTag(), M);
			integer p;
			F.characteristic(p);
			//std::cerr<<"Charpoly(A) mod "<<p<<" = "<<P;

			delete Ap;
			return P;
		}            
	};
       
	template < class Polynomial,class Blackbox >
	Polynomial& charpoly (Polynomial                       & P, 
			      const Blackbox                   & A,
			      const RingCategories::IntegerTag & tag,
			      const Method::Blackbox           & M)
	{
		if (A.coldim() != A.rowdim())
			throw LinboxError("LinBox ERROR: matrix must be square for characteristic polynomial computation\n");

		commentator.start ("Integer BlackBox Charpoly : No NTL installation -> chinese remaindering", "IbbCharpoly");
		
		RandomPrimeIterator genprime( 26-(int)ceil(log((double)A.rowdim())*0.7213475205)); 

		// typename Blackbox::ConstRawIterator it = A.rawBegin();
// 		typename Blackbox::ConstRawIterator it_end = A.rawEnd();
// 		integer max = 1,min=0;
// 		while( it != it_end ){
// 			//      cerr<<"it="<<(*it)<<endl;
// 			if (max < (*it))
// 				max = *it; 
// 			if ( min > (*it))
// 				min = *it;
// 			it++;
// 		}
// 		if (max<-min) 
// 			max=-min;
// 		size_t n=A.coldim();		
// 		double hadamarcp = n/2.0*(log(double(n))+2*log(double(max))+0.21163275)/log(2.0);

// 		ChineseRemainder< FullMultipCRA<Modular<double> > > cra(hadamarcp);
 		ChineseRemainder< EarlyMultipCRA<Modular<double> > > cra(3UL);		

		IntegerModularCharpoly<Blackbox,Method::Blackbox> iteration(A, M);
		cra.operator() (P, iteration, genprime);
		commentator.stop ("done", NULL, "IbbCharpoly");
		return P;
	}
	template < class Polynomial,class Blackbox >
	Polynomial& charpoly (Polynomial                       & P, 
			      const Blackbox                   & A,
			      const RingCategories::IntegerTag & tag,
			      const Method::BlasElimination    & M)
	{
		if (A.coldim() != A.rowdim())
			throw LinboxError("LinBox ERROR: matrix must be square for characteristic polynomial computation\n");

		commentator.start ("Integer Dense Charpoly : No NTL installation -> chinese remaindering", "IbbCharpoly");
		
		RandomPrimeIterator genprime( 26-(int)ceil(log((double)A.rowdim())*0.7213475205)); 


// 		typename Blackbox::ConstRawIterator it = A.rawBegin();
// 		typename Blackbox::ConstRawIterator it_end = A.rawEnd();
// 		integer max = 1,min=0;
// 		while( it != it_end ){
// 			//      cerr<<"it="<<(*it)<<endl;
// 			if (max < (*it))
// 				max = *it; 
// 			if ( min > (*it))
// 				min = *it;
// 			it++;
// 		}
// 		if (max<-min) 
// 			max=-min;
// 		size_t n=A.coldim();
// 		double hadamarcp = n/2.0*(log(double(n))+2*log(double(max))+0.21163275)/log(2.0);

		
//		ChineseRemainder< FullMultipCRA<Modular<double> > > cra(hadamarcp);

		ChineseRemainder< EarlyMultipCRA<Modular<double> > > cra(3UL);
		IntegerModularCharpoly<Blackbox,Method::BlasElimination> iteration(A, M);
		cra(P, iteration, genprime);
		commentator.stop ("done", NULL, "IbbCharpoly");
		return P;
	}

#endif	

	
	/** Compute the characteristic polynomial over <bold>Z</bold><sub>p</sub>.
	 *
	 * Compute the characteristic polynomial of a matrix, represented via 
	 * a blackBox.
	 * 
	 * @param P Polynomial where to store the result
	 * @param A Blackbox representing the matrix
	 */
	template < class Polynomial, class Blackbox/*, class Categorytag*/ >
	Polynomial& charpoly (Polynomial                       & P, 
			      const Blackbox                   & A,
			      const RingCategories::ModularTag & tag,
			      const Method::Blackbox           & M)
	{
		if (A.coldim() != A.rowdim())
			throw LinboxError("LinBox ERROR: matrix must be square for characteristic polynomial computation\n");

#ifdef __LINBOX_HAVE_GIVARO
		GivPolynomial<typename Blackbox::Field::Element> Pg;
		return P = blackboxcharpoly (Pg, A, tag, M);
#else
		return charpoly(P, A, tag, Method::BlasElimination());
#endif
	}
	

}

#endif // __CHARPOLY_H