This file is indexed.

/usr/include/linbox/solutions/is-positive-definite.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/solutions/is-positive-definite.h
 */
#ifndef __IS_POSITIVE_DEFINITE_H
#define __IS_POSITIVE_DEFINITE_H

#include "linbox/util/error.h"
#include <linbox/algorithms/matrix-hom.h>
#include "linbox/algorithms/signature.h"

namespace LinBox
{
	// for specialization with respect to the DomainCategory
    template< class Blackbox, class isPositiveDefiniteMethod, class DomainCategory>
    bool isPositiveDefinite (
		const Blackbox        &A,
		const DomainCategory  &tag,
		const isPositiveDefiniteMethod  &M);

	/** Compute the isPositiveDefinite of A
	 *
	 * The isPositiveDefinite of a linear operator A, represented as a
	 * black box, is computed over the ring or field of A.
	 *
	 * @param r OUTPUT instance into which to store the result r
	 * @param A Black box of which to compute the isPositiveDefinite
	 * @param M may be a Method::Hybrid (default), Method::Blackbox, Method::Elimination, or of other method type.
         \ingroup isPositiveDefinites
        */
    template <class Blackbox, class MyMethod>
    bool isPositiveDefinite (
		const Blackbox                              &A,
		const MyMethod                           &M) 
    {
        return isPositiveDefinite( A, typename FieldTraits<typename Blackbox::Field>::categoryTag(), M);
    }

	// The isPositiveDefinite with default Method 
    template<class Blackbox>
    bool isPositiveDefinite ( const Blackbox  &A) {
        return isPositiveDefinite(A, 
		Method::Hybrid());
    }

	// The isPositiveDefinite for ModularTag (is nonsense)
    template<class Blackbox, class MyMethod>
    bool isPositiveDefinite (
        const Blackbox                            &A,
        const RingCategories::ModularTag          &tag,
		const MyMethod& M)
    {
		//commentator << "nonsense!!"
		throw (LinboxError("isPositiveDefinite: Integer matrix required"));
        return false;
    }

	// The isPositiveDefinite with Hybrid Method 
    template<class Blackbox>
    bool isPositiveDefinite (
        const Blackbox 			&A,
        const RingCategories::IntegerTag          &tag,
		const Method::Hybrid& M)
    {
		// should try a modular minpoly and decide on the degree of that...
        if (A.rowdim() != A.coldim()) return false;
		// this crude size check can be refined
		if (A.coldim() > 7000) return isPositiveDefinite(A, tag, Method::Blackbox(M));
		else return isPositiveDefinite(A, tag, Method::Elimination(M));
    }

	// The isPositiveDefinite with Elimination Method 
    template<class Blackbox>
    bool isPositiveDefinite (
		const Blackbox                            &A,
		const RingCategories::IntegerTag          &tag,
		const Method::Elimination& M)
    {
		// this can be a hybrid of EliminationMinpoly and BlasElimination (which means use LU here)
		// It will be faster to do EliminationMinpoly when deg(m_A) is low.

		// right now it is just BlasElimination
        return isPositiveDefinite(A, tag, Method::BlasElimination(M));
    }

	// The isPositiveDefinite with BlackBox Method 
    template<class Blackbox>
    bool isPositiveDefinite (
		const Blackbox                      &A,
		const RingCategories::IntegerTag    &tag,
		const Method::Blackbox              &M)
    {
        return isPositiveDefinite(A, tag, Method::Wiedemann(M));
    }


	// The isPositiveDefinite with Wiedemann, finite field.
    template <class Blackbox>
    bool isPositiveDefinite (
		const Blackbox                      &A,
		const RingCategories::IntegerTag    &tag,
		const Method::Wiedemann             &M)
    {
		// call Wiedemann code
		return Signature::isPosDef(A, Signature::Minpoly_Method() );
	}

	// the isPositiveDefinite with Blas. 
    template <class Blackbox>
    bool isPositiveDefinite (
		const Blackbox                      &A,
		const RingCategories::IntegerTag    &tag,
		const Method::BlasElimination       &M)
    {
		// call BlasElimination code
		DenseMatrix<typename Blackbox::Field>* DA;
		MatrixHom::map(DA, A, A. field());
		bool s = Signature::isPosDef(*DA, Signature::BLAS_LPM_Method() );
		delete DA;
		return s;
	}
	
	// the isPositiveDefinite with Blas, DenseMatrix
    template <class Ring>
    bool isPositiveDefinite (
		const DenseMatrix<Ring> &A,
		const RingCategories::IntegerTag    &tag,
		const Method::BlasElimination       &M)
    {
		// call BlasElimination code
		return Signature::isPosDef(A, Signature::BLAS_LPM_Method() );
	}
	
} // end of LinBox namespace
#endif // __IS_POSITIVE_DEFINITE_H