/usr/include/linbox/solutions/is-positive-semidefinite.h is in liblinbox-dev 1.1.6~rc0-4.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | /* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/solutions/is-positive-semidefinite.h
*/
#ifndef __IS_POSITIVE_SEMIDEFINITE_H
#define __IS_POSITIVE_SEMIDEFINITE_H
#include "linbox/util/error.h"
#include <linbox/algorithms/matrix-hom.h>
#include "linbox/algorithms/signature.h"
namespace LinBox
{
// for specialization with respect to the DomainCategory
template< class Blackbox, class isPositiveSemiDefiniteMethod, class DomainCategory>
bool isPositiveSemiDefinite (
const Blackbox &A,
const DomainCategory &tag,
const isPositiveSemiDefiniteMethod &M);
/** Compute the isPositiveSemiDefinite of A
*
* The isPositiveSemiDefinite of a linear operator A, represented as a
* black box, is computed over the ring or field of A.
*
* @param r OUTPUT instance into which to store the result r
* @param A Black box of which to compute the isPositiveSemiDefinite
* @param M may be a Method::Hybrid (SemiDefault), Method::Blackbox, Method::Elimination, or of other method type.
\ingroup isPositiveSemiDefinites
*/
template <class Blackbox, class MyMethod>
bool isPositiveSemiDefinite (
const Blackbox &A,
const MyMethod &M)
{
return isPositiveSemiDefinite( A, typename FieldTraits<typename Blackbox::Field>::categoryTag(), M);
}
// The isPositiveSemiDefinite with SemiDefault Method
template<class Blackbox>
bool isPositiveSemiDefinite ( const Blackbox &A) {
return isPositiveSemiDefinite(A,
Method::Hybrid());
}
// The isPositiveSemiDefinite for ModularTag (is nonsense)
template<class Blackbox, class MyMethod>
bool isPositiveSemiDefinite (
const Blackbox &A,
const RingCategories::ModularTag &tag,
const MyMethod& M)
{
//commentator << "nonsense!!"
throw (LinboxError("isPositiveSemiDefinite: Integer matrix required"));
return false;
}
// The isPositiveSemiDefinite with Hybrid Method
template<class Blackbox>
bool isPositiveSemiDefinite (
const Blackbox &A,
const RingCategories::IntegerTag &tag,
const Method::Hybrid& M)
{
// should try a modular minpoly and decide on the degree of that...
if (A.rowdim() != A.coldim()) return false;
// this crude size check can be refined
if (A.coldim() > 7000) return isPositiveSemiDefinite(A, tag, Method::Blackbox(M));
else return isPositiveSemiDefinite(A, tag, Method::Elimination(M));
}
// The isPositiveSemiDefinite with Elimination Method
template<class Blackbox>
bool isPositiveSemiDefinite (
const Blackbox &A,
const RingCategories::IntegerTag &tag,
const Method::Elimination& M)
{
// this can be a hybrid of EliminationMinpoly and BlasElimination (which means use LU here)
// It will be faster to do EliminationMinpoly when deg(m_A) is low.
// right now it is just BlasElimination
return isPositiveSemiDefinite(A, tag, Method::BlasElimination(M));
}
// The isPositiveSemiDefinite with BlackBox Method
template<class Blackbox>
bool isPositiveSemiDefinite (
const Blackbox &A,
const RingCategories::IntegerTag &tag,
const Method::Blackbox &M)
{
return isPositiveSemiDefinite(A, tag, Method::Wiedemann(M));
}
// The isPositiveSemiDefinite with Wiedemann, finite field.
template <class Blackbox>
bool isPositiveSemiDefinite (
const Blackbox &A,
const RingCategories::IntegerTag &tag,
const Method::Wiedemann &M)
{
// call Wiedemann code
return Signature::isPosSemiDef(A, Signature::Minpoly_Method() );
}
// the isPositiveSemiDefinite with Blas.
template <class Blackbox>
bool isPositiveSemiDefinite (
const Blackbox &A,
const RingCategories::IntegerTag &tag,
const Method::BlasElimination &M)
{
// call BlasElimination code
DenseMatrix<typename Blackbox::Field>* DA;
MatrixHom::map(DA, A, A. field());
bool s = Signature::isPosSemiDef(*DA, Signature::BLAS_LPM_Method() );
delete DA;
return s;
}
// the isPositiveSemiDefinite with Blas, DenseMatrix
template <class Ring>
bool isPositiveSemiDefinite (
const DenseMatrix<Ring> &A,
const RingCategories::IntegerTag &tag,
const Method::BlasElimination &M)
{
// call BlasElimination code
return Signature::isPosSemiDef(A, Signature::BLAS_LPM_Method() );
}
} // end of LinBox namespace
#endif // __IS_POSITIVE_SEMIDEFINITE_H
|