This file is indexed.

/usr/include/linbox/solutions/is-positive-semidefinite.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/solutions/is-positive-semidefinite.h
 */
#ifndef __IS_POSITIVE_SEMIDEFINITE_H
#define __IS_POSITIVE_SEMIDEFINITE_H

#include "linbox/util/error.h"
#include <linbox/algorithms/matrix-hom.h>
#include "linbox/algorithms/signature.h"

namespace LinBox
{
	// for specialization with respect to the DomainCategory
    template< class Blackbox, class isPositiveSemiDefiniteMethod, class DomainCategory>
    bool isPositiveSemiDefinite (
		const Blackbox        &A,
		const DomainCategory  &tag,
		const isPositiveSemiDefiniteMethod  &M);

	/** Compute the isPositiveSemiDefinite of A
	 *
	 * The isPositiveSemiDefinite of a linear operator A, represented as a
	 * black box, is computed over the ring or field of A.
	 *
	 * @param r OUTPUT instance into which to store the result r
	 * @param A Black box of which to compute the isPositiveSemiDefinite
	 * @param M may be a Method::Hybrid (SemiDefault), Method::Blackbox, Method::Elimination, or of other method type.
         \ingroup isPositiveSemiDefinites
        */
    template <class Blackbox, class MyMethod>
    bool isPositiveSemiDefinite (
		const Blackbox                              &A,
		const MyMethod                           &M) 
    {
        return isPositiveSemiDefinite( A, typename FieldTraits<typename Blackbox::Field>::categoryTag(), M);
    }

	// The isPositiveSemiDefinite with SemiDefault Method 
    template<class Blackbox>
    bool isPositiveSemiDefinite ( const Blackbox  &A) {
        return isPositiveSemiDefinite(A, 
		Method::Hybrid());
    }

	// The isPositiveSemiDefinite for ModularTag (is nonsense)
    template<class Blackbox, class MyMethod>
    bool isPositiveSemiDefinite (
        const Blackbox                            &A,
        const RingCategories::ModularTag          &tag,
		const MyMethod& M)
    {
		//commentator << "nonsense!!"
		throw (LinboxError("isPositiveSemiDefinite: Integer matrix required"));
        return false;
    }

	// The isPositiveSemiDefinite with Hybrid Method 
    template<class Blackbox>
    bool isPositiveSemiDefinite (
        const Blackbox 			&A,
        const RingCategories::IntegerTag          &tag,
		const Method::Hybrid& M)
    {
		// should try a modular minpoly and decide on the degree of that...
        if (A.rowdim() != A.coldim()) return false;
		// this crude size check can be refined
		if (A.coldim() > 7000) return isPositiveSemiDefinite(A, tag, Method::Blackbox(M));
		else return isPositiveSemiDefinite(A, tag, Method::Elimination(M));
    }

	// The isPositiveSemiDefinite with Elimination Method 
    template<class Blackbox>
    bool isPositiveSemiDefinite (
		const Blackbox                            &A,
		const RingCategories::IntegerTag          &tag,
		const Method::Elimination& M)
    {
		// this can be a hybrid of EliminationMinpoly and BlasElimination (which means use LU here)
		// It will be faster to do EliminationMinpoly when deg(m_A) is low.

		// right now it is just BlasElimination
        return isPositiveSemiDefinite(A, tag, Method::BlasElimination(M));
    }

	// The isPositiveSemiDefinite with BlackBox Method 
    template<class Blackbox>
    bool isPositiveSemiDefinite (
		const Blackbox                      &A,
		const RingCategories::IntegerTag    &tag,
		const Method::Blackbox              &M)
    {
        return isPositiveSemiDefinite(A, tag, Method::Wiedemann(M));
    }


	// The isPositiveSemiDefinite with Wiedemann, finite field.
    template <class Blackbox>
    bool isPositiveSemiDefinite (
		const Blackbox                      &A,
		const RingCategories::IntegerTag    &tag,
		const Method::Wiedemann             &M)
    {
		// call Wiedemann code
		return Signature::isPosSemiDef(A, Signature::Minpoly_Method() );
	}

	// the isPositiveSemiDefinite with Blas. 
    template <class Blackbox>
    bool isPositiveSemiDefinite (
		const Blackbox                      &A,
		const RingCategories::IntegerTag    &tag,
		const Method::BlasElimination       &M)
    {
		// call BlasElimination code
		DenseMatrix<typename Blackbox::Field>* DA;
		MatrixHom::map(DA, A, A. field());
		bool s = Signature::isPosSemiDef(*DA, Signature::BLAS_LPM_Method() );
		delete DA;
		return s;
	}
	
	// the isPositiveSemiDefinite with Blas, DenseMatrix
    template <class Ring>
    bool isPositiveSemiDefinite (
		const DenseMatrix<Ring> &A,
		const RingCategories::IntegerTag    &tag,
		const Method::BlasElimination       &M)
    {
		// call BlasElimination code
		return Signature::isPosSemiDef(A, Signature::BLAS_LPM_Method() );
	}
	
} // end of LinBox namespace
#endif // __IS_POSITIVE_SEMIDEFINITE_H