This file is indexed.

/usr/include/linbox/solutions/valence.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
// ======================================================================= //
// Copyright (C)  1999, Linbox project
// Givaro / Athapascan-1
// Valence computation
// Time-stamp: <09 Mar 07 18:34:05 Jean-Guillaume.Dumas@imag.fr> 
// ======================================================================= //
// Modified by Z. Wan to fit in linbox
#ifndef __LINBOX_VALENCE_H__
#define __LINBOX_VALENCE_H__

#include <vector>
#include <linbox/blackbox/transpose.h>

#include <linbox/solutions/minpoly.h>

namespace LinBox 
{
	
	/*- @brief Valence of a blackbox linear operator A.
         * This is the coefficient of the smallest degree
         * non zero monomial of the minimal polynomial of A.
	 * The resulting value is a Field Element.
	 */
	template < class Blackbox, class DomainCategory, class MyMethod>
	typename Blackbox::Field::Element &valence (typename Blackbox::Field::Element & V,
                                                    const Blackbox& A,
                                                    const DomainCategory& tag,
                                                    const MyMethod& M);


	/** \brief Compute the valence of A
	 *
	 * The valence of a linear operator A, represented as a
	 * black box, is computed over the ring or field of A.
	 *
	 * @param v Field element into which to store the result
	 * @param A Black box of which to compute the determinant
	 * @param M may is a Method.
         \ingroup solutions
        */
    template <class Blackbox, class MyMethod>
    typename Blackbox::Field::Element &valence (typename Blackbox::Field::Element         &v, 
                                                const Blackbox                              &A,
                                                const MyMethod                           &M) 
    {
        return valence(v, A, typename FieldTraits<typename Blackbox::Field>::categoryTag(), M);
    }

	// The valence with default Method 
    template<class Blackbox>
    typename Blackbox::Field::Element &valence (typename Blackbox::Field::Element         &v, 
                                                const Blackbox                               &A)
    {
        return valence(v, A, Method::Hybrid());
    }

    template<class Blackbox, class MyMethod>
    typename Blackbox::Field::Element &valence (
	typename Blackbox::Field::Element         &v, 
        const Blackbox                            &A,
        const RingCategories::ModularTag          &tag,
	const MyMethod& M)
    {
        typedef typename Blackbox::Field::Element Elt_t;
        std::vector<Elt_t> minp;
        minpoly(minp, A, tag, M);
        typename std::vector<Elt_t>::const_iterator it = minp.begin();
        for( ; it != minp.end(); ++it)
            if (! A.field().isZero(*it)) break;
        if (it != minp.end())
            return v=*it;
        else
            return A.field().init(v,0UL);
    }

}

#include "linbox/field/modular.h"
#include "linbox/algorithms/cra-domain.h"
#include "linbox/algorithms/cra-early-single.h"
#include "linbox/randiter/random-prime.h"
#include "linbox/algorithms/matrix-hom.h"

namespace LinBox {
   
    template <class Blackbox, class MyMethod>
    struct IntegerModularValence {       
        const Blackbox &A;
        const MyMethod &M;

        IntegerModularValence(const Blackbox& b, const MyMethod& n) 
                : A(b), M(n) {}
        
        
        template<typename Field>
	typename Field::Element& operator()(typename Field::Element& v, const Field& F) const {
            typedef typename Blackbox::template rebind<Field>::other FBlackbox;
            FBlackbox * Ap;
            MatrixHom::map(Ap, A, F);
            valence( v, *Ap, M);
            delete Ap;
            return v;
        }            
    };

    template <class Blackbox, class MyMethod>
	typename Blackbox::Field::Element &valence (typename Blackbox::Field::Element &V, 
                                                    const Blackbox                     &A,
                                                    const RingCategories::IntegerTag   &tag,
                                                    const MyMethod                     &M)
    {
        commentator.start ("Integer Valence", "Ivalence");
        RandomPrimeIterator genprime( 26 ); 
        ChineseRemainder< EarlySingleCRA< Modular<double> > > cra(3UL);
        IntegerModularValence<Blackbox,MyMethod> iteration(A, M);
        cra(V, iteration, genprime);
        commentator.stop ("done", NULL, "Ivalence");
        return V;
    }

    
} //End of LinBox


namespace LinBox {
	

class Valence {
	public:

	// compute the bound for eigenvalue of AAT via oval of cassini
	// works with both SparseMatrix and DenseMatrix
	template <class Blackbox>
	static integer& cassini (integer& r, const Blackbox& A) {
		//commentator.start ("Cassini bound", "cassini");
    	integer _aat_diag, _aat_radius, _aat_radius1;
    	typedef typename Blackbox::Field Ring;
		_aat_diag = 0; _aat_radius = 0, _aat_radius1 = 0;

        std::vector< integer > d(A. rowdim()),w(A. coldim());
        std::vector<integer>::iterator di, wi;
        for(wi = w.begin();wi!= w.end();++wi) 
            *wi = 0;
        for(di = d.begin();di!= d.end();++di) 
            *di = 0;
		//typename Blackbox::ConstRowIterator row_p;
		typename Blackbox::Element tmp_e;
		Ring R(A. field());
		integer tmp; size_t i, j;
	
		for (j = 0, di = d. begin(); j < A. rowdim(); ++ j, ++ di) {
			// not efficient, but I am not tired of doing case by case
			for ( i = 0; i < A. coldim(); ++ i) {
				R. assign(tmp_e, A.getEntry( j, i));
				R. convert (tmp, tmp_e);
				if (tmp != 0) {
					*di += tmp * tmp;
					w [(int) i] += abs (tmp);
				}

            _aat_diag = _aat_diag >= *di ? _aat_diag : *di;
            }
        }

		for (j = 0, di = d. begin(); j < A. rowdim(); ++ j, ++ di) {
           	integer local_radius = 0;
			for (i = 0; i < A. coldim(); ++ i) {
				R. assign (tmp_e, A. getEntry (j, i));
				R. convert (tmp, tmp_e);
				if (tmp != 0) 
					local_radius += abs (tmp) * w[(int)i];
			}
			local_radius -= *di;
			if ( local_radius > _aat_radius1) {
				if ( local_radius > _aat_radius) {
					_aat_radius1 = _aat_radius;
					_aat_radius = local_radius;
				} else
					_aat_radius1 = local_radius;
			}
		}

        r = _aat_diag + (integer)sqrt( _aat_radius * _aat_radius1 );
	commentator.report (Commentator::LEVEL_IMPORTANT, INTERNAL_DESCRIPTION);
	//std::cout << "Cassini bound (AAT) =: " << r << std::endl;
		//commentator. stop ("done", NULL, "cassini");
		return r;
    }   

	// compute one valence of AAT over a field
	template <class Blackbox>
	static void one_valence(typename Blackbox::Element& v, unsigned long& r, const Blackbox& A) {
		//commentator.start ("One valence", "one valence");
		typedef std::vector<typename Blackbox::Element> Poly; Poly poly;
		typename Blackbox::Field F(A. field());
		Transpose<Blackbox> AT (&A);
		Compose<Blackbox, Transpose<Blackbox> > AAT(&A, &AT);
		// compute the minpoly of AAT
		minpoly(poly, AAT, Method::Wiedemann());
		typename Poly::iterator p;
		F. init (v, 0);

		for (p = poly. begin(); p != poly. end(); ++ p)
			if (! F. isZero (*p)) {
				F. assign (v, *p);
				break;
			}
		
		r = poly. size() -1;
		std::ostream& report = commentator.report (Commentator::LEVEL_IMPORTANT, INTERNAL_DESCRIPTION);
			
		//	std::ostream& report = std::cout;
		report << "one valence =: " << v << " over ";
		A. field(). write(report); report << std::endl;
		//commentator. stop ("done", NULL, "one valence");
		return;
	}

	// compute the valence of AAT over an integer ring
	template <class Blackbox>
	static void valence(Integer& val, const Blackbox& A) {
		commentator. start ("Valence (AAT)", "Valence");
		typedef Modular<int32> Field;
		typedef typename MatrixHomTrait<Blackbox, Field>::value_type FBlackbox;
		FBlackbox* Ap;
		int n_bit = (int)(log((double)Field::getMaxModulus()) / M_LN2 - 2);
		unsigned long d; 
                RandomPrimeIterator g(n_bit); Field::Element v;
		++g; Field F(*g);
		MatrixHom::map (Ap, A, F);
		one_valence(v, d, *Ap); delete Ap;
		commentator.report (Commentator::LEVEL_IMPORTANT, INTERNAL_DESCRIPTION);
		//std::cout<<"degree of minpoly of AAT: " << d << std::endl;
		valence (val, d, A);
		commentator.report (Commentator::LEVEL_IMPORTANT, INTERNAL_DESCRIPTION)
			<< "Integer valence =: " << val << std::endl;
		commentator. stop ("done", NULL, "Valence");
		return;
	}

	// compute the valence of AAT over an integer ring
	// d, the degree of min_poly of AAT
	template <class Blackbox>
	static void valence(Integer& val, unsigned long d, const Blackbox& A) {

		typedef Modular<int32> Field;
		typedef typename MatrixHomTrait<Blackbox, Field>::value_type FBlackbox;
		FBlackbox* Ap;
		int n_bit = (int)(log((double)Field::getMaxModulus()) / M_LN2 - 2);
                RandomPrimeIterator rg(n_bit);
		std::vector<integer> Lv, Lm;
		unsigned long d1; Field::Element v; integer im = 1;
		//compute an upper bound for val.
		integer bound; cassini (bound, A); bound = pow (bound, d); bound *= 2;
		commentator.report (Commentator::LEVEL_IMPORTANT, INTERNAL_DESCRIPTION)
			<< "Bound for valence: " << bound << std::endl;

		do {
			++rg;
			Field F(*rg);
			MatrixHom::map (Ap, A, F);
			one_valence(v, d1, *Ap); delete Ap;
			if (d1 == d) {
				im *= *rg;
				Lm. push_back ( *rg ); Lv. push_back (integer(v));
			}
		} while (im < bound);

		val = 0;
		std::vector<integer>::iterator Lv_p, Lm_p; integer tmp, a, b, g;
		for (Lv_p = Lv. begin(), Lm_p = Lm. begin(); Lv_p != Lv. end(); ++ Lv_p, ++ Lm_p) {
			tmp = im / *Lm_p;
			gcd (g, *Lm_p, tmp, a, b);
			val += *Lv_p * b * tmp;
			val %= im;
		}

		if (sign (val) < 0)
			val += im;
		tmp = val - im;
		if (abs(tmp) < abs(val)) 
			val = tmp;

		return;
	}
};
} //End of LinBox
#endif