/usr/include/ns3/propagation-loss-model.h is in libns3-dev 3.13+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 | /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2005,2006,2007 INRIA
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Mathieu Lacage <mathieu.lacage@sophia.inria.fr>
* Contributions: Timo Bingmann <timo.bingmann@student.kit.edu>
* Contributions: Gary Pei <guangyu.pei@boeing.com> for fixed RSS
* Contributions: Tom Hewer <tomhewer@mac.com> for two ray ground model
* Pavel Boyko <boyko@iitp.ru> for matrix
*/
#ifndef PROPAGATION_LOSS_MODEL_H
#define PROPAGATION_LOSS_MODEL_H
#include "ns3/object.h"
#include "ns3/random-variable.h"
#include <map>
namespace ns3 {
/**
* \defgroup propagation Propagation Models
*
*/
class MobilityModel;
/**
* \ingroup propagation
*
* \brief Modelize the propagation loss through a transmission medium
*
* Calculate the receive power (dbm) from a transmit power (dbm)
* and a mobility model for the source and destination positions.
*/
class PropagationLossModel : public Object
{
public:
static TypeId GetTypeId (void);
PropagationLossModel ();
virtual ~PropagationLossModel ();
/**
* \brief Enables a chain of loss models to act on the signal
* \param next The next PropagationLossModel to add to the chain
*
* This method of chaining propagation loss models only works commutatively
* if the propagation loss of all models in the chain are independent
* of transmit power.
*/
void SetNext (Ptr<PropagationLossModel> next);
/**
* \param txPowerDbm current transmission power (in dBm)
* \param a the mobility model of the source
* \param b the mobility model of the destination
* \returns the reception power after adding/multiplying propagation loss (in dBm)
*/
double CalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
private:
PropagationLossModel (const PropagationLossModel &o);
PropagationLossModel &operator = (const PropagationLossModel &o);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const = 0;
Ptr<PropagationLossModel> m_next;
};
/**
* \ingroup propagation
*
* \brief The propagation loss follows a random distribution.
*/
class RandomPropagationLossModel : public PropagationLossModel
{
public:
static TypeId GetTypeId (void);
RandomPropagationLossModel ();
virtual ~RandomPropagationLossModel ();
private:
RandomPropagationLossModel (const RandomPropagationLossModel &o);
RandomPropagationLossModel & operator = (const RandomPropagationLossModel &o);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
RandomVariable m_variable;
};
/**
* \ingroup propagation
*
* \brief a Friis propagation loss model
*
* The Friis propagation loss model was first described in
* "A Note on a Simple Transmission Formula", by
* "Harald T. Friis".
*
* The original equation was described as:
* \f$ \frac{P_r}{P_t} = \frac{A_r A_t}{d^2\lambda^2} \f$
* with the following equation for the case of an
* isotropic antenna with no heat loss:
* \f$ A_{isotr.} = \frac{\lambda^2}{4\pi} \f$
*
* The final equation becomes:
* \f$ \frac{P_r}{P_t} = \frac{\lambda^2}{(4 \pi d)^2} \f$
*
* Modern extensions to this original equation are:
* \f$ P_r = \frac{P_t G_t G_r \lambda^2}{(4 \pi d)^2 L}\f$
*
* With:
* - \f$ P_r \f$ : reception power (W)
* - \f$ P_t \f$ : transmission power (W)
* - \f$ G_t \f$ : transmission gain (unit-less)
* - \f$ G_r \f$ : reception gain (unit-less)
* - \f$ \lambda \f$ : wavelength (m)
* - \f$ d \f$ : distance (m)
* - \f$ L \f$ : system loss (unit-less)
*
*
* This model is invalid for small distance values.
* The current implementation returns the txpower as the rxpower
* for any distance smaller than MinDistance.
*/
class FriisPropagationLossModel : public PropagationLossModel
{
public:
static TypeId GetTypeId (void);
FriisPropagationLossModel ();
/**
* \param frequency (Hz)
* \param speed (m/s)
*
* Set the main wavelength used in the Friis model
* calculation.
*/
void SetLambda (double frequency, double speed);
/**
* \param lambda (m) the wavelength
*
* Set the main wavelength used in the Friis model
* calculation.
*/
void SetLambda (double lambda);
/**
* \param systemLoss (dimension-less)
*
* Set the system loss used by the Friis propagation model.
*/
void SetSystemLoss (double systemLoss);
/**
* \param minDistance the minimum distance
*
* Below this distance, the txpower is returned
* unmodified as the rxpower.
*/
void SetMinDistance (double minDistance);
/**
* \returns the minimum distance.
*/
double GetMinDistance (void) const;
/**
* \returns the current wavelength (m)
*/
double GetLambda (void) const;
/**
* \returns the current system loss (dimension-less)
*/
double GetSystemLoss (void) const;
private:
FriisPropagationLossModel (const FriisPropagationLossModel &o);
FriisPropagationLossModel & operator = (const FriisPropagationLossModel &o);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
double DbmToW (double dbm) const;
double DbmFromW (double w) const;
static const double PI;
double m_lambda;
double m_systemLoss;
double m_minDistance;
};
/**
* \ingroup propagation
*
* \brief a Two-Ray Ground propagation loss model ported from NS2
*
* Two-ray ground reflection model.
*
* \f$ Pr = \frac{Pt * Gt * Gr * (ht^2 * hr^2)}{d^4 * L} \f$
*
* The original equation in Rappaport's book assumes L = 1.
* To be consistent with the free space equation, L is added here.
*
* Ht and Hr are set at the respective nodes z coordinate plus a model parameter
* set via SetHeightAboveZ.
*
* The two-ray model does not give a good result for short distances, due to the
* oscillation caused by constructive and destructive combination of the two
* rays. Instead the Friis free-space model is used for small distances.
*
* The crossover distance, below which Friis is used, is calculated as follows:
*
* \f$ dCross = \frac{(4 * pi * Ht * Hr)}{lambda} \f$
*/
class TwoRayGroundPropagationLossModel : public PropagationLossModel
{
public:
static TypeId GetTypeId (void);
TwoRayGroundPropagationLossModel ();
/**
* \param frequency (Hz)
* \param speed (m/s)
*
* Set the main wavelength used in the TwoRayGround model
* calculation.
*/
void SetLambda (double frequency, double speed);
/**
* \param lambda (m) the wavelength
*
* Set the main wavelength used in the TwoRayGround model
* calculation.
*/
void SetLambda (double lambda);
/**
* \param systemLoss (dimension-less)
*
* Set the system loss used by the TwoRayGround propagation model.
*/
void SetSystemLoss (double systemLoss);
/**
* \param minDistance the minimum distance
*
* Below this distance, the txpower is returned
* unmodified as the rxpower.
*/
void SetMinDistance (double minDistance);
/**
* \returns the minimum distance.
*/
double GetMinDistance (void) const;
/**
* \returns the current wavelength (m)
*/
double GetLambda (void) const;
/**
* \returns the current system loss (dimension-less)
*/
double GetSystemLoss (void) const;
/**
* \param heightAboveZ the model antenna height above the node's Z coordinate
*
* Set the model antenna height above the node's Z coordinate
*/
void SetHeightAboveZ (double heightAboveZ);
private:
TwoRayGroundPropagationLossModel (const TwoRayGroundPropagationLossModel &o);
TwoRayGroundPropagationLossModel & operator = (const TwoRayGroundPropagationLossModel &o);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
double DbmToW (double dbm) const;
double DbmFromW (double w) const;
static const double PI;
double m_lambda;
double m_systemLoss;
double m_minDistance;
double m_heightAboveZ;
};
/**
* \ingroup propagation
*
* \brief a log distance propagation model.
*
* This model calculates the reception power with a so-called
* log-distance propagation model:
* \f$ L = L_0 + 10 n log_{10}(\frac{d}{d_0})\f$
*
* where:
* - \f$ n \f$ : the path loss distance exponent
* - \f$ d_0 \f$ : reference distance (m)
* - \f$ L_0 \f$ : path loss at reference distance (dB)
* - \f$ d \f$ : distance (m)
* - \f$ L \f$ : path loss (dB)
*
* When the path loss is requested at a distance smaller than
* the reference distance, the tx power is returned.
*
*/
class LogDistancePropagationLossModel : public PropagationLossModel
{
public:
static TypeId GetTypeId (void);
LogDistancePropagationLossModel ();
/**
* \param n the path loss exponent.
* Set the path loss exponent.
*/
void SetPathLossExponent (double n);
/**
* \returns the current path loss exponent.
*/
double GetPathLossExponent (void) const;
void SetReference (double referenceDistance, double referenceLoss);
private:
LogDistancePropagationLossModel (const LogDistancePropagationLossModel &o);
LogDistancePropagationLossModel & operator = (const LogDistancePropagationLossModel &o);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
static Ptr<PropagationLossModel> CreateDefaultReference (void);
double m_exponent;
double m_referenceDistance;
double m_referenceLoss;
};
/**
* \ingroup propagation
*
* \brief A log distance path loss propagation model with three distance
* fields. This model is the same as ns3::LogDistancePropagationLossModel
* except that it has three distance fields: near, middle and far with
* different exponents.
*
* Within each field the reception power is calculated using the log-distance
* propagation equation:
* \f[ L = L_0 + 10 \cdot n_0 log_{10}(\frac{d}{d_0})\f]
* Each field begins where the previous ends and all together form a continuous function.
*
* There are three valid distance fields: near, middle, far. Actually four: the
* first from 0 to the reference distance is invalid and returns txPowerDbm.
*
* \f[ \underbrace{0 \cdots\cdots}_{=0} \underbrace{d_0 \cdots\cdots}_{n_0} \underbrace{d_1 \cdots\cdots}_{n_1} \underbrace{d_2 \cdots\cdots}_{n_2} \infty \f]
*
* Complete formula for the path loss in dB:
*
* \f[\displaystyle L =
\begin{cases}
0 & d < d_0 \\
L_0 + 10 \cdot n_0 \log_{10}(\frac{d}{d_0}) & d_0 \leq d < d_1 \\
L_0 + 10 \cdot n_0 \log_{10}(\frac{d_1}{d_0}) + 10 \cdot n_1 \log_{10}(\frac{d}{d_1}) & d_1 \leq d < d_2 \\
L_0 + 10 \cdot n_0 \log_{10}(\frac{d_1}{d_0}) + 10 \cdot n_1 \log_{10}(\frac{d_2}{d_1}) + 10 \cdot n_2 \log_{10}(\frac{d}{d_2})& d_2 \leq d
\end{cases}\f]
*
* where:
* - \f$ L \f$ : resulting path loss (dB)
* - \f$ d \f$ : distance (m)
* - \f$ d_0, d_1, d_2 \f$ : three distance fields (m)
* - \f$ n_0, n_1, n_2 \f$ : path loss distance exponent for each field (unitless)
* - \f$ L_0 \f$ : path loss at reference distance (dB)
*
* When the path loss is requested at a distance smaller than the reference
* distance \f$ d_0 \f$, the tx power (with no path loss) is returned. The
* reference distance defaults to 1m and reference loss defaults to
* ns3::FriisPropagationLossModel with 5.15 GHz and is thus \f$ L_0 \f$ = 46.67 dB.
*/
class ThreeLogDistancePropagationLossModel : public PropagationLossModel
{
public:
static TypeId GetTypeId (void);
ThreeLogDistancePropagationLossModel ();
// Parameters are all accessible via attributes.
private:
ThreeLogDistancePropagationLossModel (const ThreeLogDistancePropagationLossModel& o);
ThreeLogDistancePropagationLossModel& operator= (const ThreeLogDistancePropagationLossModel& o);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
double m_distance0;
double m_distance1;
double m_distance2;
double m_exponent0;
double m_exponent1;
double m_exponent2;
double m_referenceLoss;
};
/**
* \ingroup propagation
*
* \brief Nakagami-m fast fading propagation loss model.
*
* The Nakagami-m distribution is applied to the power level. The probability
* density function is defined as
* \f[ p(x; m, \omega) = \frac{2 m^m}{\Gamma(m) \omega^m} x^{2m - 1} e^{-\frac{m}{\omega} x^2} = 2 x \cdot p_{\text{Gamma}}(x^2, m, \frac{m}{\omega}) \f]
* with \f$ m \f$ the fading depth parameter and \f$ \omega \f$ the average received power.
*
* It is implemented by either a ns3::GammaVariable or a ns3::ErlangVariable
* random variable.
*
* Like in ns3::ThreeLogDistancePropagationLossModel, the m parameter is varied
* over three distance fields:
* \f[ \underbrace{0 \cdots\cdots}_{m_0} \underbrace{d_1 \cdots\cdots}_{m_1} \underbrace{d_2 \cdots\cdots}_{m_2} \infty \f]
*
* For m = 1 the Nakagami-m distribution equals the Rayleigh distribution. Thus
* this model also implements Rayleigh distribution based fast fading.
*/
class NakagamiPropagationLossModel : public PropagationLossModel
{
public:
static TypeId GetTypeId (void);
NakagamiPropagationLossModel ();
// Parameters are all accessible via attributes.
private:
NakagamiPropagationLossModel (const NakagamiPropagationLossModel& o);
NakagamiPropagationLossModel& operator= (const NakagamiPropagationLossModel& o);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
double m_distance1;
double m_distance2;
double m_m0;
double m_m1;
double m_m2;
ErlangVariable m_erlangRandomVariable;
GammaVariable m_gammaRandomVariable;
};
/**
* \ingroup propagation
*
* \brief Return a constant received power level independent of the transmit
* power
*
* The received power is constant independent of the transmit power. The user
* must set received power level through the Rss attribute or public
* SetRss() method. Note that if this loss model is chained to other loss
* models via SetNext() method, it can only be the first loss model in such
* a chain, or else it will disregard the losses computed by loss models
* that precede it in the chain.
*/
class FixedRssLossModel : public PropagationLossModel
{
public:
static TypeId GetTypeId (void);
FixedRssLossModel ();
virtual ~FixedRssLossModel ();
/**
* \param rss (dBm) the received signal strength
*
* Set the received signal strength (RSS) in dBm.
*/
void SetRss (double rss);
private:
FixedRssLossModel (const FixedRssLossModel &o);
FixedRssLossModel & operator = (const FixedRssLossModel &o);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
double m_rss;
};
/**
* \ingroup propagation
*
* \brief The propagation loss is fixed for each pair of nodes and doesn't depend on their actual positions.
*
* This is supposed to be used by synthetic tests. Note that by default propagation loss is assumed to be symmetric.
*/
class MatrixPropagationLossModel : public PropagationLossModel
{
public:
static TypeId GetTypeId (void);
MatrixPropagationLossModel ();
virtual ~MatrixPropagationLossModel ();
/**
* \brief Set loss (in dB, positive) between pair of ns-3 objects
* (typically, nodes).
*
* \param a ma Source mobility model
* \param b mb Destination mobility model
* \param loss a -> b path loss, positive in dB
* \param symmetric If true (default), both a->b and b->a paths will be affected
*/
void SetLoss (Ptr<MobilityModel> a, Ptr<MobilityModel> b, double loss, bool symmetric = true);
/// Set default loss (in dB, positive) to be used, infinity if not set
void SetDefaultLoss (double);
private:
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
private:
/// default loss
double m_default;
typedef std::pair< Ptr<MobilityModel>, Ptr<MobilityModel> > MobilityPair;
/// Fixed loss between pair of nodes
std::map<MobilityPair, double> m_loss;
};
/**
* \ingroup propagation
*
* \brief The propagation loss depends only on the distance (range) between transmitter and receiver.
*
* The single MaxRange attribute (units of meters) determines path loss.
* Receivers at or within MaxRange meters receive the transmission at the
* transmit power level. Receivers beyond MaxRange receive at power
* -1000 dBm (effectively zero).
*/
class RangePropagationLossModel : public PropagationLossModel
{
public:
static TypeId GetTypeId (void);
RangePropagationLossModel ();
private:
RangePropagationLossModel (const RangePropagationLossModel& o);
RangePropagationLossModel& operator= (const RangePropagationLossModel& o);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
private:
double m_range;
};
} // namespace ns3
#endif /* PROPAGATION_LOSS_MODEL_H */
|