/usr/share/doc/NTL/tour-ex4.html is in libntl-dev 5.4.2-4.1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 | <html>
<head>
<title>
A Tour of NTL: Examples: Modular Arithmetic </title>
</head>
<body bgcolor="#fff9e6">
<center>
<a href="tour-ex3.html"><img src="arrow1.gif" alt="[Previous]" align=bottom></a>
<a href="tour-examples.html"><img src="arrow2.gif" alt="[Up]" align=bottom></a>
<a href="tour-ex5.html"> <img src="arrow3.gif" alt="[Next]" align=bottom></a>
</center>
<h1>
<p align=center>
A Tour of NTL: Examples: Modular Arithmetic
</p>
</h1>
<p> <hr> <p>
NTL also supports modular integer arithmetic.
The class <tt>ZZ_p</tt>
represents the integers mod <tt>p</tt>.
Despite the notation, <tt>p</tt> need not in general be prime,
except in situations where this is mathematically required.
The classes <tt>vec_ZZ_p</tt>, <tt>mat_ZZ_p</tt>,
and <tt>ZZ_pX</tt> represent vectors, matrices, and polynomials
mod <tt>p</tt>, and work much the same way as the corresponding
classes for <tt>ZZ</tt>.
<p>
Here is a program that reads a prime number <tt>p</tt>,
and a polynomial <tt>f</tt> modulo <tt>p</tt>, and factors it.
<p>
<pre>
#include <NTL/ZZ_pXFactoring.h>
NTL_CLIENT
int main()
{
ZZ p;
cin >> p;
ZZ_p::init(p);
ZZ_pX f;
cin >> f;
vec_pair_ZZ_pX_long factors;
CanZass(factors, f); // calls "Cantor/Zassenhaus" algorithm
cout << factors << "\n";
}
</pre>
<p>
As a program is running, NTL keeps track of a "current modulus"
for the class <tt>ZZ_p</tt>, which can be initialized or changed
using <tt>ZZ_p::init</tt>.
This must be done before any variables are declared or
computations are done that depend on this modulus.
<p>
Please note that for efficiency reasons,
NTL does not make any attempt to ensure that
variables declared under one modulus are not used
under a different one.
If that happens, the behavior of a program in this
case is completely unpredictable.
<p> <hr> <p>
Here are two more examples that illustrate the <tt>ZZ_p</tt>-related
classes.
The first is a vector addition routine (already supplied by NTL):
<p>
<pre>
#include <NTL/vec_ZZ_p.h>
NTL_CLIENT
void add(vec_ZZ_p& x, const vec_ZZ_p& a, const vec_ZZ_p& b)
{
long n = a.length();
if (b.length() != n) Error("vector add: dimension mismatch");
x.SetLength(n);
long i;
for (i = 0; i < n; i++)
add(x[i], a[i], b[i]);
}
</pre>
<p>
The second example is an inner product routine (also supplied by NTL):
<p>
<pre>
#include <NTL/vec_ZZ_p.h>
NTL_CLIENT
void InnerProduct(ZZ_p& x, const vec_ZZ_p& a, const vec_ZZ_p& b)
{
long n = min(a.length(), b.length());
long i;
ZZ accum, t;
accum = 0;
for (i = 0; i < n; i++) {
mul(t, rep(a[i]), rep(b[i]));
add(accum, accum, t);
}
conv(x, accum);
}
</pre>
<p>
This second example illustrates two things.
First, it illustrates the use of function <tt>rep</tt> which
returns a read-only reference to the representation of a <tt>ZZ_p</tt>
as a <tt>ZZ</tt> between <tt>0</tt> and <tt>p-1</tt>.
Second, it illustrates a useful algorithmic technique,
whereby one computes over <tt>ZZ</tt>, reducing mod <tt>p</tt>
only when necessary.
This reduces the number of divisions that need to be performed significantly,
leading to much faster execution.
<p>
The class <tt>ZZ_p</tt> supports all the basic arithmetic
operations in both operator and procedural form.
All of the basic operations support a "promotion logic",
promoting <tt>long</tt> to <tt>ZZ_p</tt>.
<p>
Note that the class <tt>ZZ_p</tt> is mainly useful only
when you want to work with vectors, matrices, or polynomials
mod <tt>p</tt>.
If you just want to do some simple modular arithemtic,
it is probably easier to just work with <tt>ZZ</tt>s directly.
This is especially true if you want to work with many different
moduli: modulus switching is supported, but it is a bit awkward.
<p>
The class <tt>ZZ_pX</tt> supports all the basic arithmetic
operations in both operator and procedural form.
All of the basic operations support a "promotion logic",
promoting both <tt>long</tt> and <tt>ZZ_p</tt> to <tt>ZZ_pX</tt>.
<p>
See <a href="ZZ_p.txt"><tt>ZZ_p.txt</tt></a> for details on <tt>ZZ_p</tt>;
see <a href="ZZ_pX.txt"><tt>ZZ_pX.txt</tt></a> for details on <tt>ZZ_pX</tt>;
see <a href="ZZ_pXFactoring.txt"><tt>ZZ_pXFactoring.txt</tt></a> for details on
the routines for factoring polynomials over <tt>ZZ_p</tt>;
see <a href="vec_ZZ_p.txt"><tt>vec_ZZ_p.txt</tt></a> for details on <tt>vec_ZZ_p</tt>;
see <a href="mat_ZZ_p.txt"><tt>mat_ZZ_p.txt</tt></a> for details on <tt>mat_ZZ_p</tt>.
<p> <hr> <p>
There is a mechanism for saving and restoring a modulus,
which the following example illustrates.
This routine takes as input an integer polynomial
and a prime, and tests if the polynomial is irreducible modulo
the prime.
<p>
<pre>
#include <NTL/ZZX.h>
#include <NTL/ZZ_pXFactoring.h>
NTL_CLIENT
long IrredTestMod(const ZZX& f, const ZZ& p)
{
ZZ_pBak bak;
bak.save(); // save current modulus in bak
ZZ_p::init(p); // set the current modulus to p
return DetIrredTest(to_ZZ_pX(f));
// old modulus is restored automatically when bak is destroyed
// upon return
}
</pre>
<p>
The modulus switching mechanism is actually quite a bit
more general and flexible than this example illustrates.
<p>
The function <tt>to_ZZ_pX</tt> is yet another of NTL's many
conversion functions.
We could also have used the equivalent procedural form:
<pre>
ZZ_pX f1;
conv(f1, f);
return DetIrredTest(f1);
</pre>
<p> <hr> <p>
Suppose in the above example that <tt>p</tt> is known in advance
to be a small, single-precision prime.
In this case, NTL provides a class <tt>zz_p</tt>, that
acts just like <tt>ZZ_p</tt>,
along with corresponding classes <tt>vec_zz_p</tt>,
<tt>mat_zz_p</tt>, and <tt>zz_pX</tt>.
The interfaces to all of the routines are generally identical
to those for <tt>ZZ_p</tt>.
However, the routines are much more efficient, in both time and space.
<p>
For small primes, the routine in the previous example could be coded
as follows.
<p>
<pre>
#include <NTL/ZZX.h>
#include <NTL/lzz_pXFactoring.h>
NTL_CLIENT
long IrredTestMod(const ZZX& f, long p)
{
zz_pBak bak;
bak.save();
zz_p::init(p);
return DetIrredTest(to_zz_pX(f));
}
</pre>
<p> <hr> <p>
The following is a routine (essentially the same as implemented in NTL)
for computing the GCD of polynomials with integer coefficients.
It uses a "modular" approach: the GCDs are computed modulo small
primes, and the results are combined using the Chinese Remainder Theorem (CRT).
The small primes are specially chosen "FFT primes", which are of
a special form that allows for particular fast polynomial arithmetic.
<p>
<pre>
#include <NTL/ZZX.h>
NTL_CLIENT
void GCD(ZZX& d, const ZZX& a, const ZZX& b)
{
if (a == 0) {
d = b;
if (LeadCoeff(d) < 0) negate(d, d);
return;
}
if (b == 0) {
d = a;
if (LeadCoeff(d) < 0) negate(d, d);
return;
}
ZZ c1, c2, c;
ZZX f1, f2;
content(c1, a);
divide(f1, a, c1);
content(c2, b);
divide(f2, b, c2);
GCD(c, c1, c2);
ZZ ld;
GCD(ld, LeadCoeff(f1), LeadCoeff(f2));
ZZX g, res;
ZZ prod;
zz_pBak bak;
bak.save();
long FirstTime = 1;
long i;
for (i = 0; ;i++) {
zz_p::FFTInit(i);
long p = zz_p::modulus();
if (divide(LeadCoeff(f1), p) || divide(LeadCoeff(f2), p)) continue;
zz_pX G, F1, F2;
zz_p LD;
conv(F1, f1);
conv(F2, f2);
conv(LD, ld);
GCD(G, F1, F2);
mul(G, G, LD);
if (deg(G) == 0) {
res = 1;
break;
}
if (FirstTime || deg(G) < deg(g)) {
prod = 1;
g = 0;
FirstTime = 0;
}
else if (deg(G) > deg(g)) {
continue;
}
if (!CRT(g, prod, G)) {
PrimitivePart(res, g);
if (divide(f1, res) && divide(f2, res))
break;
}
}
mul(d, res, c);
if (LeadCoeff(d) < 0) negate(d, d);
}
</pre>
<p>
See <a href="lzz_p.txt"><tt>lzz_p.txt</tt></a> for details on <tt>zz_p</tt>;
see <a href="lzz_pX.txt"><tt>lzz_pX.txt</tt></a> for details on <tt>zz_pX</tt>;
see <a href="lzz_pXFactoring.txt"><tt>lzz_pXFactoring.txt</tt></a> for details on
the routines for factoring polynomials over <tt>zz_p</tt>;
see <a href="vec_lzz_p.txt"><tt>vec_lzz_p.txt</tt></a> for details on <tt>vec_zz_p</tt>;
see <a href="mat_lzz_p.txt"><tt>mat_lzz_p.txt</tt></a> for details on <tt>mat_zz_p</tt>.
<p> <hr> <p>
Arithmetic mod 2 is such an important special case that NTL
provides a class <tt>GF2</tt>, that
acts just like <tt>ZZ_p</tt> when <tt>p == 2</tt>,
along with corresponding classes <tt>vec_GF2</tt>,
<tt>mat_GF2</tt>, and <tt>GF2X</tt>.
The interfaces to all of the routines are generally identical
to those for <tt>ZZ_p</tt>.
However, the routines are much more efficient, in both time and space.
<p>
This example illustrates the <tt>GF2X</tt> and <tt>mat_GF2</tt>
classes with a simple routine to test if a polynomial over GF(2)
is irreducible using linear algebra.
NTL's built-in irreducibility test is to be preferred, however.
<pre>
#include <NTL/GF2X.h>
#include <NTL/mat_GF2.h>
NTL_CLIENT
long MatIrredTest(const GF2X& f)
{
long n = deg(f);
if (n <= 0) return 0;
if (n == 1) return 1;
if (GCD(f, diff(f)) != 1) return 0;
mat_GF2 M;
M.SetDims(n, n);
GF2X x_squared = GF2X(2, 1);
GF2X g;
g = 1;
for (long i = 0; i < n; i++) {
VectorCopy(M[i], g, n);
M[i][i] += 1;
g = (g * x_squared) % f;
}
long rank = gauss(M);
if (rank == n-1)
return 1;
else
return 0;
}
</pre>
<p>
Note that the statement
<pre>
g = (g * x_squared) % f;
</pre>
could be replace d by the more efficient code sequence
<pre>
MulByXMod(g, g, f);
MulByXMod(g, g, f);
</pre>
but this would not significantly impact the overall
running time, since it is the Gaussian elimination that
dominates the running time.
<p>
See <a href="GF2.txt"><tt>GF2.txt</tt></a> for details on <tt>GF2</tt>;
see <a href="GF2X.txt"><tt>GF2X.txt</tt></a> for details on <tt>GF2X</tt>;
see <a href="GF2XFactoring.txt"><tt>GF2XFactoring.txt</tt></a> for details on
the routines for factoring polynomials over <tt>GF2</tt>;
see <a href="vec_GF2.txt"><tt>vec_GF2.txt</tt></a> for details on <tt>vec_GF2</tt>;
see <a href="mat_GF2.txt"><tt>mat_GF2.txt</tt></a> for details on <tt>mat_GF2</tt>.
<p>
<center>
<a href="tour-ex3.html"><img src="arrow1.gif" alt="[Previous]" align=bottom></a>
<a href="tour-examples.html"><img src="arrow2.gif" alt="[Up]" align=bottom></a>
<a href="tour-ex5.html"> <img src="arrow3.gif" alt="[Next]" align=bottom></a>
</center>
</body>
</html>
|