This file is indexed.

/usr/include/opencv2/flann/kmeans_index.h is in libopencv-flann-dev 2.3.1-7.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef OPENCV_FLANN_KMEANS_INDEX_H_
#define OPENCV_FLANN_KMEANS_INDEX_H_

#include <algorithm>
#include <string>
#include <map>
#include <cassert>
#include <limits>
#include <cmath>

#include "general.h"
#include "nn_index.h"
#include "dist.h"
#include "matrix.h"
#include "result_set.h"
#include "heap.h"
#include "allocator.h"
#include "random.h"
#include "saving.h"
#include "logger.h"


namespace cvflann
{

struct KMeansIndexParams : public IndexParams
{
    KMeansIndexParams(int branching = 32, int iterations = 11,
                      flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 )
    {
        (*this)["algorithm"] = FLANN_INDEX_KMEANS;
        // branching factor
        (*this)["branching"] = branching;
        // max iterations to perform in one kmeans clustering (kmeans tree)
        (*this)["iterations"] = iterations;
        // algorithm used for picking the initial cluster centers for kmeans tree
        (*this)["centers_init"] = centers_init;
        // cluster boundary index. Used when searching the kmeans tree
        (*this)["cb_index"] = cb_index;
    }
};


/**
 * Hierarchical kmeans index
 *
 * Contains a tree constructed through a hierarchical kmeans clustering
 * and other information for indexing a set of points for nearest-neighbour matching.
 */
template <typename Distance>
class KMeansIndex : public NNIndex<Distance>
{
public:
    typedef typename Distance::ElementType ElementType;
    typedef typename Distance::ResultType DistanceType;



    typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&);

    /**
     * The function used for choosing the cluster centers.
     */
    centersAlgFunction chooseCenters;



    /**
     * Chooses the initial centers in the k-means clustering in a random manner.
     *
     * Params:
     *     k = number of centers
     *     vecs = the dataset of points
     *     indices = indices in the dataset
     *     indices_length = length of indices vector
     *
     */
    void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length)
    {
        UniqueRandom r(indices_length);

        int index;
        for (index=0; index<k; ++index) {
            bool duplicate = true;
            int rnd;
            while (duplicate) {
                duplicate = false;
                rnd = r.next();
                if (rnd<0) {
                    centers_length = index;
                    return;
                }

                centers[index] = indices[rnd];

                for (int j=0; j<index; ++j) {
                    DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols);
                    if (sq<1e-16) {
                        duplicate = true;
                    }
                }
            }
        }

        centers_length = index;
    }


    /**
     * Chooses the initial centers in the k-means using Gonzales' algorithm
     * so that the centers are spaced apart from each other.
     *
     * Params:
     *     k = number of centers
     *     vecs = the dataset of points
     *     indices = indices in the dataset
     * Returns:
     */
    void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length)
    {
        int n = indices_length;

        int rnd = rand_int(n);
        assert(rnd >=0 && rnd < n);

        centers[0] = indices[rnd];

        int index;
        for (index=1; index<k; ++index) {

            int best_index = -1;
            DistanceType best_val = 0;
            for (int j=0; j<n; ++j) {
                DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols);
                for (int i=1; i<index; ++i) {
                    DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols);
                    if (tmp_dist<dist) {
                        dist = tmp_dist;
                    }
                }
                if (dist>best_val) {
                    best_val = dist;
                    best_index = j;
                }
            }
            if (best_index!=-1) {
                centers[index] = indices[best_index];
            }
            else {
                break;
            }
        }
        centers_length = index;
    }


    /**
     * Chooses the initial centers in the k-means using the algorithm
     * proposed in the KMeans++ paper:
     * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
     *
     * Implementation of this function was converted from the one provided in Arthur's code.
     *
     * Params:
     *     k = number of centers
     *     vecs = the dataset of points
     *     indices = indices in the dataset
     * Returns:
     */
    void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length)
    {
        int n = indices_length;

        double currentPot = 0;
        DistanceType* closestDistSq = new DistanceType[n];

        // Choose one random center and set the closestDistSq values
        int index = rand_int(n);
        assert(index >=0 && index < n);
        centers[0] = indices[index];

        for (int i = 0; i < n; i++) {
            closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
            currentPot += closestDistSq[i];
        }


        const int numLocalTries = 1;

        // Choose each center
        int centerCount;
        for (centerCount = 1; centerCount < k; centerCount++) {

            // Repeat several trials
            double bestNewPot = -1;
            int bestNewIndex = -1;
            for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {

                // Choose our center - have to be slightly careful to return a valid answer even accounting
                // for possible rounding errors
                double randVal = rand_double(currentPot);
                for (index = 0; index < n-1; index++) {
                    if (randVal <= closestDistSq[index]) break;
                    else randVal -= closestDistSq[index];
                }

                // Compute the new potential
                double newPot = 0;
                for (int i = 0; i < n; i++) newPot += std::min( distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols), closestDistSq[i] );

                // Store the best result
                if ((bestNewPot < 0)||(newPot < bestNewPot)) {
                    bestNewPot = newPot;
                    bestNewIndex = index;
                }
            }

            // Add the appropriate center
            centers[centerCount] = indices[bestNewIndex];
            currentPot = bestNewPot;
            for (int i = 0; i < n; i++) closestDistSq[i] = std::min( distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols), closestDistSq[i] );
        }

        centers_length = centerCount;

        delete[] closestDistSq;
    }



public:

    flann_algorithm_t getType() const
    {
        return FLANN_INDEX_KMEANS;
    }

    /**
     * Index constructor
     *
     * Params:
     *          inputData = dataset with the input features
     *          params = parameters passed to the hierarchical k-means algorithm
     */
    KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(),
                Distance d = Distance())
        : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d)
    {
        memoryCounter_ = 0;

        size_ = dataset_.rows;
        veclen_ = dataset_.cols;

        branching_ = get_param(params,"branching",32);
        iterations_ = get_param(params,"iterations",11);
        if (iterations_<0) {
            iterations_ = (std::numeric_limits<int>::max)();
        }
        centers_init_  = get_param(params,"centers_init",FLANN_CENTERS_RANDOM);

        if (centers_init_==FLANN_CENTERS_RANDOM) {
            chooseCenters = &KMeansIndex::chooseCentersRandom;
        }
        else if (centers_init_==FLANN_CENTERS_GONZALES) {
            chooseCenters = &KMeansIndex::chooseCentersGonzales;
        }
        else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
            chooseCenters = &KMeansIndex::chooseCentersKMeanspp;
        }
        else {
            throw FLANNException("Unknown algorithm for choosing initial centers.");
        }
        cb_index_ = 0.4f;

    }


    KMeansIndex(const KMeansIndex&);
    KMeansIndex& operator=(const KMeansIndex&);


    /**
     * Index destructor.
     *
     * Release the memory used by the index.
     */
    virtual ~KMeansIndex()
    {
        if (root_ != NULL) {
            free_centers(root_);
        }
        if (indices_!=NULL) {
            delete[] indices_;
        }
    }

    /**
     *  Returns size of index.
     */
    size_t size() const
    {
        return size_;
    }

    /**
     * Returns the length of an index feature.
     */
    size_t veclen() const
    {
        return veclen_;
    }


    void set_cb_index( float index)
    {
        cb_index_ = index;
    }

    /**
     * Computes the inde memory usage
     * Returns: memory used by the index
     */
    int usedMemory() const
    {
        return pool_.usedMemory+pool_.wastedMemory+memoryCounter_;
    }

    /**
     * Builds the index
     */
    void buildIndex()
    {
        if (branching_<2) {
            throw FLANNException("Branching factor must be at least 2");
        }

        indices_ = new int[size_];
        for (size_t i=0; i<size_; ++i) {
            indices_[i] = int(i);
        }

        root_ = pool_.allocate<KMeansNode>();
        computeNodeStatistics(root_, indices_, (int)size_);
        computeClustering(root_, indices_, (int)size_, branching_,0);
    }


    void saveIndex(FILE* stream)
    {
        save_value(stream, branching_);
        save_value(stream, iterations_);
        save_value(stream, memoryCounter_);
        save_value(stream, cb_index_);
        save_value(stream, *indices_, (int)size_);

        save_tree(stream, root_);
    }


    void loadIndex(FILE* stream)
    {
        load_value(stream, branching_);
        load_value(stream, iterations_);
        load_value(stream, memoryCounter_);
        load_value(stream, cb_index_);
        if (indices_!=NULL) {
            delete[] indices_;
        }
        indices_ = new int[size_];
        load_value(stream, *indices_, size_);

        if (root_!=NULL) {
            free_centers(root_);
        }
        load_tree(stream, root_);

        index_params_["algorithm"] = getType();
        index_params_["branching"] = branching_;
        index_params_["iterations"] = iterations_;
        index_params_["centers_init"] = centers_init_;
        index_params_["cb_index"] = cb_index_;

    }


    /**
     * Find set of nearest neighbors to vec. Their indices are stored inside
     * the result object.
     *
     * Params:
     *     result = the result object in which the indices of the nearest-neighbors are stored
     *     vec = the vector for which to search the nearest neighbors
     *     searchParams = parameters that influence the search algorithm (checks, cb_index)
     */
    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
    {

        int maxChecks = get_param(searchParams,"checks",32);

        if (maxChecks==FLANN_CHECKS_UNLIMITED) {
            findExactNN(root_, result, vec);
        }
        else {
            // Priority queue storing intermediate branches in the best-bin-first search
            Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);

            int checks = 0;
            findNN(root_, result, vec, checks, maxChecks, heap);

            BranchSt branch;
            while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
                KMeansNodePtr node = branch.node;
                findNN(node, result, vec, checks, maxChecks, heap);
            }
            assert(result.full());

            delete heap;
        }

    }

    /**
     * Clustering function that takes a cut in the hierarchical k-means
     * tree and return the clusters centers of that clustering.
     * Params:
     *     numClusters = number of clusters to have in the clustering computed
     * Returns: number of cluster centers
     */
    int getClusterCenters(Matrix<DistanceType>& centers)
    {
        int numClusters = centers.rows;
        if (numClusters<1) {
            throw FLANNException("Number of clusters must be at least 1");
        }

        DistanceType variance;
        KMeansNodePtr* clusters = new KMeansNodePtr[numClusters];

        int clusterCount = getMinVarianceClusters(root_, clusters, numClusters, variance);

        Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount);

        for (int i=0; i<clusterCount; ++i) {
            DistanceType* center = clusters[i]->pivot;
            for (size_t j=0; j<veclen_; ++j) {
                centers[i][j] = center[j];
            }
        }
        delete[] clusters;

        return clusterCount;
    }

    IndexParams getParameters() const
    {
        return index_params_;
    }


private:
    /**
     * Struture representing a node in the hierarchical k-means tree.
     */
    struct KMeansNode
    {
        /**
         * The cluster center.
         */
        DistanceType* pivot;
        /**
         * The cluster radius.
         */
        DistanceType radius;
        /**
         * The cluster mean radius.
         */
        DistanceType mean_radius;
        /**
         * The cluster variance.
         */
        DistanceType variance;
        /**
         * The cluster size (number of points in the cluster)
         */
        int size;
        /**
         * Child nodes (only for non-terminal nodes)
         */
        KMeansNode** childs;
        /**
         * Node points (only for terminal nodes)
         */
        int* indices;
        /**
         * Level
         */
        int level;
    };
    typedef KMeansNode* KMeansNodePtr;

    /**
     * Alias definition for a nicer syntax.
     */
    typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt;




    void save_tree(FILE* stream, KMeansNodePtr node)
    {
        save_value(stream, *node);
        save_value(stream, *(node->pivot), (int)veclen_);
        if (node->childs==NULL) {
            int indices_offset = (int)(node->indices - indices_);
            save_value(stream, indices_offset);
        }
        else {
            for(int i=0; i<branching_; ++i) {
                save_tree(stream, node->childs[i]);
            }
        }
    }


    void load_tree(FILE* stream, KMeansNodePtr& node)
    {
        node = pool_.allocate<KMeansNode>();
        load_value(stream, *node);
        node->pivot = new DistanceType[veclen_];
        load_value(stream, *(node->pivot), (int)veclen_);
        if (node->childs==NULL) {
            int indices_offset;
            load_value(stream, indices_offset);
            node->indices = indices_ + indices_offset;
        }
        else {
            node->childs = pool_.allocate<KMeansNodePtr>(branching_);
            for(int i=0; i<branching_; ++i) {
                load_tree(stream, node->childs[i]);
            }
        }
    }


    /**
     * Helper function
     */
    void free_centers(KMeansNodePtr node)
    {
        delete[] node->pivot;
        if (node->childs!=NULL) {
            for (int k=0; k<branching_; ++k) {
                free_centers(node->childs[k]);
            }
        }
    }

    /**
     * Computes the statistics of a node (mean, radius, variance).
     *
     * Params:
     *     node = the node to use
     *     indices = the indices of the points belonging to the node
     */
    void computeNodeStatistics(KMeansNodePtr node, int* indices, int indices_length)
    {

        DistanceType radius = 0;
        DistanceType variance = 0;
        DistanceType* mean = new DistanceType[veclen_];
        memoryCounter_ += int(veclen_*sizeof(DistanceType));

        memset(mean,0,veclen_*sizeof(DistanceType));

        for (size_t i=0; i<size_; ++i) {
            ElementType* vec = dataset_[indices[i]];
            for (size_t j=0; j<veclen_; ++j) {
                mean[j] += vec[j];
            }
            variance += distance_(vec, ZeroIterator<ElementType>(), veclen_);
        }
        for (size_t j=0; j<veclen_; ++j) {
            mean[j] /= size_;
        }
        variance /= size_;
        variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_);

        DistanceType tmp = 0;
        for (int i=0; i<indices_length; ++i) {
            tmp = distance_(mean, dataset_[indices[i]], veclen_);
            if (tmp>radius) {
                radius = tmp;
            }
        }

        node->variance = variance;
        node->radius = radius;
        node->pivot = mean;
    }


    /**
     * The method responsible with actually doing the recursive hierarchical
     * clustering
     *
     * Params:
     *     node = the node to cluster
     *     indices = indices of the points belonging to the current node
     *     branching = the branching factor to use in the clustering
     *
     * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
     */
    void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level)
    {
        node->size = indices_length;
        node->level = level;

        if (indices_length < branching) {
            node->indices = indices;
            std::sort(node->indices,node->indices+indices_length);
            node->childs = NULL;
            return;
        }

        int* centers_idx = new int[branching];
        int centers_length;
        (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length);

        if (centers_length<branching) {
            node->indices = indices;
            std::sort(node->indices,node->indices+indices_length);
            node->childs = NULL;
            delete [] centers_idx;
            return;
        }


        Matrix<double> dcenters(new double[branching*veclen_],branching,veclen_);
        for (int i=0; i<centers_length; ++i) {
            ElementType* vec = dataset_[centers_idx[i]];
            for (size_t k=0; k<veclen_; ++k) {
                dcenters[i][k] = double(vec[k]);
            }
        }
        delete[] centers_idx;

        DistanceType* radiuses = new DistanceType[branching];
        int* count = new int[branching];
        for (int i=0; i<branching; ++i) {
            radiuses[i] = 0;
            count[i] = 0;
        }

        //	assign points to clusters
        int* belongs_to = new int[indices_length];
        for (int i=0; i<indices_length; ++i) {

            DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_);
            belongs_to[i] = 0;
            for (int j=1; j<branching; ++j) {
                DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_);
                if (sq_dist>new_sq_dist) {
                    belongs_to[i] = j;
                    sq_dist = new_sq_dist;
                }
            }
            if (sq_dist>radiuses[belongs_to[i]]) {
                radiuses[belongs_to[i]] = sq_dist;
            }
            count[belongs_to[i]]++;
        }

        bool converged = false;
        int iteration = 0;
        while (!converged && iteration<iterations_) {
            converged = true;
            iteration++;

            // compute the new cluster centers
            for (int i=0; i<branching; ++i) {
                memset(dcenters[i],0,sizeof(double)*veclen_);
                radiuses[i] = 0;
            }
            for (int i=0; i<indices_length; ++i) {
                ElementType* vec = dataset_[indices[i]];
                double* center = dcenters[belongs_to[i]];
                for (size_t k=0; k<veclen_; ++k) {
                    center[k] += vec[k];
                }
            }
            for (int i=0; i<branching; ++i) {
                int cnt = count[i];
                for (size_t k=0; k<veclen_; ++k) {
                    dcenters[i][k] /= cnt;
                }
            }

            // reassign points to clusters
            for (int i=0; i<indices_length; ++i) {
                DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_);
                int new_centroid = 0;
                for (int j=1; j<branching; ++j) {
                    DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_);
                    if (sq_dist>new_sq_dist) {
                        new_centroid = j;
                        sq_dist = new_sq_dist;
                    }
                }
                if (sq_dist>radiuses[new_centroid]) {
                    radiuses[new_centroid] = sq_dist;
                }
                if (new_centroid != belongs_to[i]) {
                    count[belongs_to[i]]--;
                    count[new_centroid]++;
                    belongs_to[i] = new_centroid;

                    converged = false;
                }
            }

            for (int i=0; i<branching; ++i) {
                // if one cluster converges to an empty cluster,
                // move an element into that cluster
                if (count[i]==0) {
                    int j = (i+1)%branching;
                    while (count[j]<=1) {
                        j = (j+1)%branching;
                    }

                    for (int k=0; k<indices_length; ++k) {
                        if (belongs_to[k]==j) {
                            belongs_to[k] = i;
                            count[j]--;
                            count[i]++;
                            break;
                        }
                    }
                    converged = false;
                }
            }

        }

        DistanceType** centers = new DistanceType*[branching];

        for (int i=0; i<branching; ++i) {
            centers[i] = new DistanceType[veclen_];
            memoryCounter_ += veclen_*sizeof(DistanceType);
            for (size_t k=0; k<veclen_; ++k) {
                centers[i][k] = (DistanceType)dcenters[i][k];
            }
        }


        // compute kmeans clustering for each of the resulting clusters
        node->childs = pool_.allocate<KMeansNodePtr>(branching);
        int start = 0;
        int end = start;
        for (int c=0; c<branching; ++c) {
            int s = count[c];

            DistanceType variance = 0;
            DistanceType mean_radius =0;
            for (int i=0; i<indices_length; ++i) {
                if (belongs_to[i]==c) {
                    DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
                    variance += d;
                    mean_radius += sqrt(d);
                    std::swap(indices[i],indices[end]);
                    std::swap(belongs_to[i],belongs_to[end]);
                    end++;
                }
            }
            variance /= s;
            mean_radius /= s;
            variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_);

            node->childs[c] = pool_.allocate<KMeansNode>();
            node->childs[c]->radius = radiuses[c];
            node->childs[c]->pivot = centers[c];
            node->childs[c]->variance = variance;
            node->childs[c]->mean_radius = mean_radius;
            node->childs[c]->indices = NULL;
            computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
            start=end;
        }

        delete[] dcenters.data;
        delete[] centers;
        delete[] radiuses;
        delete[] count;
        delete[] belongs_to;
    }



    /**
     * Performs one descent in the hierarchical k-means tree. The branches not
     * visited are stored in a priority queue.
     *
     * Params:
     *      node = node to explore
     *      result = container for the k-nearest neighbors found
     *      vec = query points
     *      checks = how many points in the dataset have been checked so far
     *      maxChecks = maximum dataset points to checks
     */


    void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
                Heap<BranchSt>* heap)
    {
        // Ignore those clusters that are too far away
        {
            DistanceType bsq = distance_(vec, node->pivot, veclen_);
            DistanceType rsq = node->radius;
            DistanceType wsq = result.worstDist();

            DistanceType val = bsq-rsq-wsq;
            DistanceType val2 = val*val-4*rsq*wsq;

            //if (val>0) {
            if ((val>0)&&(val2>0)) {
                return;
            }
        }

        if (node->childs==NULL) {
            if (checks>=maxChecks) {
                if (result.full()) return;
            }
            checks += node->size;
            for (int i=0; i<node->size; ++i) {
                int index = node->indices[i];
                DistanceType dist = distance_(dataset_[index], vec, veclen_);
                result.addPoint(dist, index);
            }
        }
        else {
            DistanceType* domain_distances = new DistanceType[branching_];
            int closest_center = exploreNodeBranches(node, vec, domain_distances, heap);
            delete[] domain_distances;
            findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap);
        }
    }

    /**
     * Helper function that computes the nearest childs of a node to a given query point.
     * Params:
     *     node = the node
     *     q = the query point
     *     distances = array with the distances to each child node.
     * Returns:
     */
    int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap<BranchSt>* heap)
    {

        int best_index = 0;
        domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_);
        for (int i=1; i<branching_; ++i) {
            domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_);
            if (domain_distances[i]<domain_distances[best_index]) {
                best_index = i;
            }
        }

        //		float* best_center = node->childs[best_index]->pivot;
        for (int i=0; i<branching_; ++i) {
            if (i != best_index) {
                domain_distances[i] -= cb_index_*node->childs[i]->variance;

                //				float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q);
                //				if (domain_distances[i]<dist_to_border) {
                //					domain_distances[i] = dist_to_border;
                //				}
                heap->insert(BranchSt(node->childs[i],domain_distances[i]));
            }
        }

        return best_index;
    }


    /**
     * Function the performs exact nearest neighbor search by traversing the entire tree.
     */
    void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec)
    {
        // Ignore those clusters that are too far away
        {
            DistanceType bsq = distance_(vec, node->pivot, veclen_);
            DistanceType rsq = node->radius;
            DistanceType wsq = result.worstDist();

            DistanceType val = bsq-rsq-wsq;
            DistanceType val2 = val*val-4*rsq*wsq;

            //                  if (val>0) {
            if ((val>0)&&(val2>0)) {
                return;
            }
        }


        if (node->childs==NULL) {
            for (int i=0; i<node->size; ++i) {
                int index = node->indices[i];
                DistanceType dist = distance_(dataset_[index], vec, veclen_);
                result.addPoint(dist, index);
            }
        }
        else {
            int* sort_indices = new int[branching_];

            getCenterOrdering(node, vec, sort_indices);

            for (int i=0; i<branching_; ++i) {
                findExactNN(node->childs[sort_indices[i]],result,vec);
            }

            delete[] sort_indices;
        }
    }


    /**
     * Helper function.
     *
     * I computes the order in which to traverse the child nodes of a particular node.
     */
    void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices)
    {
        DistanceType* domain_distances = new DistanceType[branching_];
        for (int i=0; i<branching_; ++i) {
            DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_);

            int j=0;
            while (domain_distances[j]<dist && j<i) j++;
            for (int k=i; k>j; --k) {
                domain_distances[k] = domain_distances[k-1];
                sort_indices[k] = sort_indices[k-1];
            }
            domain_distances[j] = dist;
            sort_indices[j] = i;
        }
        delete[] domain_distances;
    }

    /**
     * Method that computes the squared distance from the query point q
     * from inside region with center c to the border between this
     * region and the region with center p
     */
    DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q)
    {
        DistanceType sum = 0;
        DistanceType sum2 = 0;

        for (int i=0; i<veclen_; ++i) {
            DistanceType t = c[i]-p[i];
            sum += t*(q[i]-(c[i]+p[i])/2);
            sum2 += t*t;
        }

        return sum*sum/sum2;
    }


    /**
     * Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize
     * the overall variance of the clustering.
     * Params:
     *     root = root node
     *     clusters = array with clusters centers (return value)
     *     varianceValue = variance of the clustering (return value)
     * Returns:
     */
    int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue)
    {
        int clusterCount = 1;
        clusters[0] = root;

        DistanceType meanVariance = root->variance*root->size;

        while (clusterCount<clusters_length) {
            DistanceType minVariance = (std::numeric_limits<DistanceType>::max)();
            int splitIndex = -1;

            for (int i=0; i<clusterCount; ++i) {
                if (clusters[i]->childs != NULL) {

                    DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size;

                    for (int j=0; j<branching_; ++j) {
                        variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size;
                    }
                    if (variance<minVariance) {
                        minVariance = variance;
                        splitIndex = i;
                    }
                }
            }

            if (splitIndex==-1) break;
            if ( (branching_+clusterCount-1) > clusters_length) break;

            meanVariance = minVariance;

            // split node
            KMeansNodePtr toSplit = clusters[splitIndex];
            clusters[splitIndex] = toSplit->childs[0];
            for (int i=1; i<branching_; ++i) {
                clusters[clusterCount++] = toSplit->childs[i];
            }
        }

        varianceValue = meanVariance/root->size;
        return clusterCount;
    }

private:
    /** The branching factor used in the hierarchical k-means clustering */
    int branching_;

    /** Maximum number of iterations to use when performing k-means clustering */
    int iterations_;

    /** Algorithm for choosing the cluster centers */
    flann_centers_init_t centers_init_;

    /**
     * Cluster border index. This is used in the tree search phase when determining
     * the closest cluster to explore next. A zero value takes into account only
     * the cluster centres, a value greater then zero also take into account the size
     * of the cluster.
     */
    float cb_index_;

    /**
     * The dataset used by this index
     */
    const Matrix<ElementType> dataset_;

    /** Index parameters */
    IndexParams index_params_;

    /**
     * Number of features in the dataset.
     */
    size_t size_;

    /**
     * Length of each feature.
     */
    size_t veclen_;

    /**
     * The root node in the tree.
     */
    KMeansNodePtr root_;

    /**
     *  Array of indices to vectors in the dataset.
     */
    int* indices_;

    /**
     * The distance
     */
    Distance distance_;

    /**
     * Pooled memory allocator.
     */
    PooledAllocator pool_;

    /**
     * Memory occupied by the index.
     */
    int memoryCounter_;
};

}

#endif //OPENCV_FLANN_KMEANS_INDEX_H_