This file is indexed.

/usr/include/opencv2/flann/lsh_index.h is in libopencv-flann-dev 2.3.1-7.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

/***********************************************************************
 * Author: Vincent Rabaud
 *************************************************************************/

#ifndef OPENCV_FLANN_LSH_INDEX_H_
#define OPENCV_FLANN_LSH_INDEX_H_

#include <algorithm>
#include <cassert>
#include <cstring>
#include <map>
#include <vector>

#include "general.h"
#include "nn_index.h"
#include "matrix.h"
#include "result_set.h"
#include "heap.h"
#include "lsh_table.h"
#include "allocator.h"
#include "random.h"
#include "saving.h"

namespace cvflann
{

struct LshIndexParams : public IndexParams
{
    LshIndexParams(unsigned int table_number, unsigned int key_size, unsigned int multi_probe_level)
    {
        (* this)["algorithm"] = FLANN_INDEX_LSH;
        // The number of hash tables to use
        (*this)["table_number"] = table_number;
        // The length of the key in the hash tables
        (*this)["key_size"] = key_size;
        // Number of levels to use in multi-probe (0 for standard LSH)
        (*this)["multi_probe_level"] = multi_probe_level;
    }
};

/**
 * Randomized kd-tree index
 *
 * Contains the k-d trees and other information for indexing a set of points
 * for nearest-neighbor matching.
 */
template<typename Distance>
class LshIndex : public NNIndex<Distance>
{
public:
    typedef typename Distance::ElementType ElementType;
    typedef typename Distance::ResultType DistanceType;

    /** Constructor
     * @param input_data dataset with the input features
     * @param params parameters passed to the LSH algorithm
     * @param d the distance used
     */
    LshIndex(const Matrix<ElementType>& input_data, const IndexParams& params = LshIndexParams(),
             Distance d = Distance()) :
        dataset_(input_data), index_params_(params), distance_(d)
    {
        table_number_ = get_param<unsigned int>(index_params_,"table_number",12);
        key_size_ = get_param<unsigned int>(index_params_,"key_size",20);
        multi_probe_level_ = get_param<unsigned int>(index_params_,"multi_probe_level",2);

        feature_size_ = dataset_.cols;
        fill_xor_mask(0, key_size_, multi_probe_level_, xor_masks_);
    }


    LshIndex(const LshIndex&);
    LshIndex& operator=(const LshIndex&);

    /**
     * Builds the index
     */
    void buildIndex()
    {
        tables_.resize(table_number_);
        for (unsigned int i = 0; i < table_number_; ++i) {
            lsh::LshTable<ElementType>& table = tables_[i];
            table = lsh::LshTable<ElementType>(feature_size_, key_size_);

            // Add the features to the table
            table.add(dataset_);
        }
    }

    flann_algorithm_t getType() const
    {
        return FLANN_INDEX_LSH;
    }


    void saveIndex(FILE* stream)
    {
        save_value(stream,table_number_);
        save_value(stream,key_size_);
        save_value(stream,multi_probe_level_);
        save_value(stream, dataset_);
    }

    void loadIndex(FILE* stream)
    {
        load_value(stream, table_number_);
        load_value(stream, key_size_);
        load_value(stream, multi_probe_level_);
        load_value(stream, dataset_);
        // Building the index is so fast we can afford not storing it
        buildIndex();

        index_params_["algorithm"] = getType();
        index_params_["table_number"] = table_number_;
        index_params_["key_size"] = key_size_;
        index_params_["multi_probe_level"] = multi_probe_level_;
    }

    /**
     *  Returns size of index.
     */
    size_t size() const
    {
        return dataset_.rows;
    }

    /**
     * Returns the length of an index feature.
     */
    size_t veclen() const
    {
        return feature_size_;
    }

    /**
     * Computes the index memory usage
     * Returns: memory used by the index
     */
    int usedMemory() const
    {
        return dataset_.rows * sizeof(int);
    }


    IndexParams getParameters() const
    {
        return index_params_;
    }

    /**
     * \brief Perform k-nearest neighbor search
     * \param[in] queries The query points for which to find the nearest neighbors
     * \param[out] indices The indices of the nearest neighbors found
     * \param[out] dists Distances to the nearest neighbors found
     * \param[in] knn Number of nearest neighbors to return
     * \param[in] params Search parameters
     */
    virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
    {
        assert(queries.cols == veclen());
        assert(indices.rows >= queries.rows);
        assert(dists.rows >= queries.rows);
        assert(int(indices.cols) >= knn);
        assert(int(dists.cols) >= knn);


        KNNUniqueResultSet<DistanceType> resultSet(knn);
        for (size_t i = 0; i < queries.rows; i++) {
            resultSet.clear();
            findNeighbors(resultSet, queries[i], params);
            if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn);
            else resultSet.copy(indices[i], dists[i], knn);
        }
    }


    /**
     * Find set of nearest neighbors to vec. Their indices are stored inside
     * the result object.
     *
     * Params:
     *     result = the result object in which the indices of the nearest-neighbors are stored
     *     vec = the vector for which to search the nearest neighbors
     *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
     */
    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& /*searchParams*/)
    {
        getNeighbors(vec, result);
    }

private:
    /** Defines the comparator on score and index
     */
    typedef std::pair<float, unsigned int> ScoreIndexPair;
    struct SortScoreIndexPairOnSecond
    {
        bool operator()(const ScoreIndexPair& left, const ScoreIndexPair& right) const
        {
            return left.second < right.second;
        }
    };

    /** Fills the different xor masks to use when getting the neighbors in multi-probe LSH
     * @param key the key we build neighbors from
     * @param lowest_index the lowest index of the bit set
     * @param level the multi-probe level we are at
     * @param xor_masks all the xor mask
     */
    void fill_xor_mask(lsh::BucketKey key, int lowest_index, unsigned int level,
                       std::vector<lsh::BucketKey>& xor_masks)
    {
        xor_masks.push_back(key);
        if (level == 0) return;
        for (int index = lowest_index - 1; index >= 0; --index) {
            // Create a new key
            lsh::BucketKey new_key = key | (1 << index);
            fill_xor_mask(new_key, index, level - 1, xor_masks);
        }
    }

    /** Performs the approximate nearest-neighbor search.
     * @param vec the feature to analyze
     * @param do_radius flag indicating if we check the radius too
     * @param radius the radius if it is a radius search
     * @param do_k flag indicating if we limit the number of nn
     * @param k_nn the number of nearest neighbors
     * @param checked_average used for debugging
     */
    void getNeighbors(const ElementType* vec, bool do_radius, float radius, bool do_k, unsigned int k_nn,
                      float& checked_average)
    {
        static std::vector<ScoreIndexPair> score_index_heap;

        if (do_k) {
            unsigned int worst_score = std::numeric_limits<unsigned int>::max();
            typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
            typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
            for (; table != table_end; ++table) {
                size_t key = table->getKey(vec);
                std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
                std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
                for (; xor_mask != xor_mask_end; ++xor_mask) {
                    size_t sub_key = key ^ (*xor_mask);
                    const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
                    if (bucket == 0) continue;

                    // Go over each descriptor index
                    std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
                    std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
                    DistanceType hamming_distance;

                    // Process the rest of the candidates
                    for (; training_index < last_training_index; ++training_index) {
                        hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);

                        if (hamming_distance < worst_score) {
                            // Insert the new element
                            score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
                            std::push_heap(score_index_heap.begin(), score_index_heap.end());

                            if (score_index_heap.size() > (unsigned int)k_nn) {
                                // Remove the highest distance value as we have too many elements
                                std::pop_heap(score_index_heap.begin(), score_index_heap.end());
                                score_index_heap.pop_back();
                                // Keep track of the worst score
                                worst_score = score_index_heap.front().first;
                            }
                        }
                    }
                }
            }
        }
        else {
            typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
            typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
            for (; table != table_end; ++table) {
                size_t key = table->getKey(vec);
                std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
                std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
                for (; xor_mask != xor_mask_end; ++xor_mask) {
                    size_t sub_key = key ^ (*xor_mask);
                    const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
                    if (bucket == 0) continue;

                    // Go over each descriptor index
                    std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
                    std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
                    DistanceType hamming_distance;

                    // Process the rest of the candidates
                    for (; training_index < last_training_index; ++training_index) {
                        // Compute the Hamming distance
                        hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
                        if (hamming_distance < radius) score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
                    }
                }
            }
        }
    }

    /** Performs the approximate nearest-neighbor search.
     * This is a slower version than the above as it uses the ResultSet
     * @param vec the feature to analyze
     */
    void getNeighbors(const ElementType* vec, ResultSet<DistanceType>& result)
    {
        typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
        typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
        for (; table != table_end; ++table) {
            size_t key = table->getKey(vec);
            std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
            std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
            for (; xor_mask != xor_mask_end; ++xor_mask) {
                size_t sub_key = key ^ (*xor_mask);
                const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
                if (bucket == 0) continue;

                // Go over each descriptor index
                std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
                std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
                DistanceType hamming_distance;

                // Process the rest of the candidates
                for (; training_index < last_training_index; ++training_index) {
                    // Compute the Hamming distance
                    hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
                    result.addPoint(hamming_distance, *training_index);
                }
            }
        }
    }

    /** The different hash tables */
    std::vector<lsh::LshTable<ElementType> > tables_;

    /** The data the LSH tables where built from */
    Matrix<ElementType> dataset_;

    /** The size of the features (as ElementType[]) */
    unsigned int feature_size_;

    IndexParams index_params_;

    /** table number */
    unsigned int table_number_;
    /** key size */
    unsigned int key_size_;
    /** How far should we look for neighbors in multi-probe LSH */
    unsigned int multi_probe_level_;

    /** The XOR masks to apply to a key to get the neighboring buckets */
    std::vector<lsh::BucketKey> xor_masks_;

    Distance distance_;
};
}

#endif //OPENCV_FLANN_LSH_INDEX_H_