This file is indexed.

/usr/include/osg/Plane is in libopenscenegraph-dev 3.0.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield 
 *
 * This library is open source and may be redistributed and/or modified under  
 * the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or 
 * (at your option) any later version.  The full license is in LICENSE file
 * included with this distribution, and on the openscenegraph.org website.
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 * OpenSceneGraph Public License for more details.
*/

#ifndef OSG_PLANE
#define OSG_PLANE 1

#include <osg/Config>
#include <osg/Export>
#include <osg/Vec3>
#include <osg/Vec4>
#include <osg/Matrix>
#include <osg/BoundingSphere>
#include <osg/BoundingBox>

#include <vector>

namespace osg {

/** @brief A plane class. It can be used to represent an infinite plane.
  * 
  * The infinite plane is described by an implicit plane equation a*x+b*y+c*z+d = 0. Though it is not mandatory that
  * a^2+b^2+c^2 = 1 is fulfilled in general some methods require it (@see osg::Plane::distance). */
class OSG_EXPORT Plane
{

    public:

#ifdef OSG_USE_FLOAT_PLANE
        /** Type of Plane class.*/
        typedef float value_type;
        typedef Vec3f Vec3_type;
        typedef Vec4f Vec4_type;
#else
        /** Type of Plane class.*/
        typedef double value_type;
        typedef Vec3d Vec3_type;
        typedef Vec4d Vec4_type;
#endif

        /** Number of vector components. */
        enum { num_components = 3 };


        /// Default constructor
        /** The default constructor initializes all values to zero.
          * @warning Although the method osg::Plane::valid() will return true after the default constructors call the plane
          *          is mathematically invalid! Default data do not describe a valid plane. */
        inline Plane() { _fv[0]=0.0; _fv[1]=0.0; _fv[2]=0.0; _fv[3]=0.0; _lowerBBCorner = 0; _upperBBCorner = 0; }
        inline Plane(const Plane& pl) { set(pl); }
        /// Constructor
        /** The plane is described as a*x+b*y+c*z+d = 0.
          * @remark You may call osg::Plane::MakeUnitLength afterwards if the passed values are not normalized. */
        inline Plane(value_type a,value_type b,value_type c,value_type d) { set(a,b,c,d); }

        /// Constructor
        /** The plane can also be described as vec*[x,y,z,1].
          * @remark You may call osg::Plane::MakeUnitLength afterwards if the passed values are not normalized. */
        inline Plane(const Vec4f& vec) { set(vec); }
        /// Constructor
        /** The plane can also be described as vec*[x,y,z,1].
          * @remark You may call osg::Plane::MakeUnitLength afterwards if the passed values are not normalized. */
        inline Plane(const Vec4d& vec) { set(vec); }

        /// Constructor
        /** This constructor initializes the internal values directly without any checking or manipulation.
          * @param norm The normal of the plane.
          * @param d    The negative distance from the point of origin to the plane.
          * @remark You may call osg::Plane::MakeUnitLength afterwards if the passed normal was not normalized. */
        inline Plane(const Vec3_type& norm,value_type d) { set(norm,d); }

        /// Constructor
        /** This constructor calculates from the three points describing an infinite plane the internal values.
          * @param v1 Point in the plane.
          * @param v2 Point in the plane.
          * @param v3 Point in the plane.
          * @remark After this constructor call the plane's normal is normalized in case the three points described a mathematically
          *         valid plane.
          * @remark The normal is determined by building the cross product of (v2-v1) ^ (v3-v2). */
        inline Plane(const Vec3_type& v1, const Vec3_type& v2, const Vec3_type& v3) { set(v1,v2,v3); }

        /// Constructor
        /** This constructor initializes the internal values directly without any checking or manipulation.
          * @param norm  The normal of the plane.
          * @param point A point of the plane.
          * @remark You may call osg::Plane::MakeUnitLength afterwards if the passed normal was not normalized. */
        inline Plane(const Vec3_type& norm, const Vec3_type& point) { set(norm,point); }

        inline Plane& operator = (const Plane& pl)
        {
            if (&pl==this) return *this;
            set(pl);
            return *this;
        }

        inline void set(const Plane& pl) { _fv[0]=pl._fv[0]; _fv[1]=pl._fv[1]; _fv[2]=pl._fv[2]; _fv[3]=pl._fv[3]; calculateUpperLowerBBCorners(); }
        inline void set(value_type a, value_type b, value_type c, value_type d) { _fv[0]=a; _fv[1]=b; _fv[2]=c; _fv[3]=d; calculateUpperLowerBBCorners(); }

        inline void set(const Vec4f& vec) { set(vec[0],vec[1],vec[2],vec[3]); }
        inline void set(const Vec4d& vec) { set(vec[0],vec[1],vec[2],vec[3]); }

        inline void set(const Vec3_type& norm, double d) { set(norm[0],norm[1],norm[2],d); }

        inline void set(const Vec3_type& v1, const Vec3_type& v2, const Vec3_type& v3)
        {
            Vec3_type norm = (v2-v1)^(v3-v2);
            value_type length = norm.length();
            if (length>1e-6) norm/= length;
            else norm.set(0.0,0.0,0.0);
            set(norm[0],norm[1],norm[2],-(v1*norm));
        }

        inline void set(const Vec3_type& norm, const Vec3_type& point)
        {
            value_type d = -norm[0]*point[0] - norm[1]*point[1] - norm[2]*point[2];
            set(norm[0],norm[1],norm[2],d);
        }

        /** flip/reverse the orientation of the plane.*/
        inline void flip()
        {
            _fv[0] = -_fv[0];
            _fv[1] = -_fv[1];
            _fv[2] = -_fv[2];
            _fv[3] = -_fv[3];
            calculateUpperLowerBBCorners();
        }

        /** This method multiplies the coefficients of the plane equation with a constant factor so that the
          * equation a^2+b^2+c^2 = 1 holds. */
        inline void makeUnitLength()
        {
            value_type inv_length = 1.0 / sqrt(_fv[0]*_fv[0] + _fv[1]*_fv[1]+ _fv[2]*_fv[2]);
            _fv[0] *= inv_length;
            _fv[1] *= inv_length;
            _fv[2] *= inv_length;
            _fv[3] *= inv_length;
        }

        /** calculate the upper and lower bounding box corners to be used
          * in the intersect(BoundingBox&) method for speeding calculations.*/
        inline void calculateUpperLowerBBCorners()
        {
            _upperBBCorner = (_fv[0]>=0.0?1:0) |
                             (_fv[1]>=0.0?2:0) |
                             (_fv[2]>=0.0?4:0);

            _lowerBBCorner = (~_upperBBCorner)&7;

        }

        /// Checks if all internal values describing the plane have valid numbers
        /** @warning This method does not check if the plane is mathematically correctly described!
          * @remark  The only case where all elements have valid numbers and the plane description is invalid occurs if the plane's normal
          *          is zero. */
        inline bool valid() const { return !isNaN(); }
        inline bool isNaN() const { return osg::isNaN(_fv[0]) || osg::isNaN(_fv[1]) || osg::isNaN(_fv[2]) || osg::isNaN(_fv[3]); }

        inline bool operator == (const Plane& plane) const { return _fv[0]==plane._fv[0] && _fv[1]==plane._fv[1] && _fv[2]==plane._fv[2] && _fv[3]==plane._fv[3]; }

        inline bool operator != (const Plane& plane) const { return _fv[0]!=plane._fv[0] || _fv[1]!=plane._fv[1] || _fv[2]!=plane._fv[2] || _fv[3]!=plane._fv[3]; }

        /** A plane is said to be smaller than another plane if the first non-identical element of the internal array is smaller than the
          * corresponding element of the other plane. */
        inline bool operator <  (const Plane& plane) const
        {
            if (_fv[0]<plane._fv[0]) return true;
            else if (_fv[0]>plane._fv[0]) return false;
            else if (_fv[1]<plane._fv[1]) return true;
            else if (_fv[1]>plane._fv[1]) return false;
            else if (_fv[2]<plane._fv[2]) return true;
            else if (_fv[2]>plane._fv[2]) return false;
            else return (_fv[3]<plane._fv[3]);
        }


        inline value_type* ptr() { return _fv; }
        inline const value_type* ptr() const { return _fv; }

        inline Vec4_type asVec4() const { return Vec4_type(_fv[0],_fv[1],_fv[2],_fv[3]); }

        inline value_type& operator [] (unsigned int i) { return _fv[i]; }
        inline value_type operator [] (unsigned int i) const { return _fv[i]; }


        inline Vec3_type getNormal() const { return Vec3_type(_fv[0],_fv[1],_fv[2]); }
      
        /** Calculate the distance between a point and the plane.
          * @remark This method only leads to real distance values if the plane's norm is 1.
          * @sa osg::Plane::makeUnitLength */
        inline float distance(const osg::Vec3f& v) const
        {
            return _fv[0]*v.x()+
                   _fv[1]*v.y()+
                   _fv[2]*v.z()+
                   _fv[3];
        }
        /** Calculate the distance between a point and the plane.
          * @remark This method only leads to real distance values if the plane's norm is 1.
          * @sa osg::Plane::makeUnitLength */
        inline double distance(const osg::Vec3d& v) const
        {
            return _fv[0]*v.x()+
                   _fv[1]*v.y()+
                   _fv[2]*v.z()+
                   _fv[3];
        }

        /** calculate the dot product of the plane normal and a point.*/
        inline float dotProductNormal(const osg::Vec3f& v) const
        {
            return _fv[0]*v.x()+
                   _fv[1]*v.y()+
                   _fv[2]*v.z();
        }

        /** calculate the dot product of the plane normal and a point.*/
        inline double dotProductNormal(const osg::Vec3d& v) const
        {
            return _fv[0]*v.x()+
                   _fv[1]*v.y()+
                   _fv[2]*v.z();
        }

        /** intersection test between plane and vertex list
            return 1 if the bs is completely above plane,
            return 0 if the bs intersects the plane,
            return -1 if the bs is completely below the plane.*/
        inline int intersect(const std::vector<Vec3f>& vertices) const
        {
            if (vertices.empty()) return -1;

            int noAbove = 0;
            int noBelow = 0;
            int noOn = 0;
            for(std::vector<Vec3f>::const_iterator itr=vertices.begin();
                itr != vertices.end();
                ++itr)
            {
                float d = distance(*itr);
                if (d>0.0f) ++noAbove;
                else if (d<0.0f) ++noBelow;
                else ++noOn;
            }

            if (noAbove>0)
            {
                if (noBelow>0) return 0;
                else return 1;
            }
            return -1; // treat points on line as outside...
        }

        /** intersection test between plane and vertex list
            return 1 if the bs is completely above plane,
            return 0 if the bs intersects the plane,
            return -1 if the bs is completely below the plane.*/
        inline int intersect(const std::vector<Vec3d>& vertices) const
        {
            if (vertices.empty()) return -1;

            int noAbove = 0;
            int noBelow = 0;
            int noOn = 0;
            for(std::vector<Vec3d>::const_iterator itr=vertices.begin();
                itr != vertices.end();
                ++itr)
            {
                double d = distance(*itr);
                if (d>0.0) ++noAbove;
                else if (d<0.0) ++noBelow;
                else ++noOn;
            }

            if (noAbove>0)
            {
                if (noBelow>0) return 0;
                else return 1;
            }
            return -1; // treat points on line as outside...
        }

        /** intersection test between plane and bounding sphere.
            return 1 if the bs is completely above plane,
            return 0 if the bs intersects the plane,
            return -1 if the bs is completely below the plane.*/
        inline int intersect(const BoundingSphere& bs) const
        {
            float d = distance(bs.center());

            if (d>bs.radius()) return 1;
            else if (d<-bs.radius()) return -1;
            else return 0;
        }


        /** intersection test between plane and bounding sphere.
            return 1 if the bs is completely above plane,
            return 0 if the bs intersects the plane,
            return -1 if the bs is completely below the plane.*/
        inline int intersect(const BoundingBox& bb) const
        {
            // if lowest point above plane than all above.
            if (distance(bb.corner(_lowerBBCorner))>0.0f) return 1;

            // if highest point is below plane then all below.
            if (distance(bb.corner(_upperBBCorner))<0.0f) return -1;

            // d_lower<=0.0f && d_upper>=0.0f
            // therefore must be crossing plane.
            return 0;

        }

        /** Transform the plane by matrix.  Note, this operation carries out
          * the calculation of the inverse of the matrix since a plane 
          * must be multiplied by the inverse transposed to transform it. This
          * make this operation expensive.  If the inverse has been already
          * calculated elsewhere then use transformProvidingInverse() instead.
          * See http://www.worldserver.com/turk/computergraphics/NormalTransformations.pdf*/
        inline void transform(const osg::Matrix& matrix)
        {
            osg::Matrix inverse;
            inverse.invert(matrix);
            transformProvidingInverse(inverse);
        }

        /** Transform the plane by providing a pre inverted matrix.
          * see transform for details. */
        inline void transformProvidingInverse(const osg::Matrix& matrix)
        {
            // note pre multiplications, which effectively transposes matrix.
            Vec4_type vec(_fv[0],_fv[1],_fv[2],_fv[3]);
            vec = matrix * vec;
            set(vec);
            makeUnitLength();
        }

    protected:

        /** Vec member variable. */
        value_type _fv[4];

        // variables cached to optimize calcs against bounding boxes.
        unsigned int        _upperBBCorner;
        unsigned int        _lowerBBCorner;


};

} // end of namespace

#endif