This file is indexed.

/usr/include/ossim/base/ossimCommon.h is in libossim-dev 1.7.21-3ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
//*******************************************************************
//
// License:  LGPL
//
// See LICENSE.txt file in the top level directory for more details.
//
// Author: Garrett Potts, with some additions and modifciations by
// Patrick Melody
//
// Description: Common file for utility functions.
//
//*************************************************************************
// $Id: ossimCommon.h 15409 2009-09-11 19:44:32Z dburken $
#ifndef ossimCommon_HEADER
#define ossimCommon_HEADER


// XXX nullify these for now, but eventually replace with a #include 
#define ossimREQUIRE(expr) 
#define ossimENSURE(expr)  
#define ossimCHECK(expr) 
#define ossimSTATIC_CHECK(expr,msg)  

#include <cmath>
#include <istream>
#include <string>
#include <vector>
#include <ossim/base/ossimConstants.h>
class ossimIpt;
namespace NEWMAT
{
   class Matrix;
}

namespace ossim
{
   OSSIM_DLL std::istream& skipws(std::istream& in);
   OSSIM_DLL bool isWhiteSpace(int c);
    template<class T>
/*     inline bool almostEqual(T x, T y, T tolerence = std::numeric_limits<T>::epsilon()) */
/*         // are x and y within tolerance distance of each other? */
/*         { return std::abs(x - y) <= tolerence; } */
    inline bool almostEqual(T x, T y, T tolerence = FLT_EPSILON)
        // are x and y within tolerance distance of each other?
        { return std::fabs(x - y) <= tolerence; }

    template <class T>
    inline bool inInterval(T x, T a, T b)
	// is x in the closed interval [a,b]?
	{ return x >= a && x <= b; }

    template <class T>
    inline bool inOpenInterval(T x, T a, T b)
	// is x in the open interval (a,b)?
	{ return x > a && x < b; }

   
    /**
     * isnan Test for floating point Not A Number (NAN) value.
     * This should be used test for nan.
     * DO NOT USE operator==.  Like "if (height == ossim::nan())"
     *
     * @return true if nan, false if not.
     *
     * @see nan()
     */
#if defined(WIN32) || defined(_MSC_VER) && !defined(__CYGWIN__) && !defined(__MWERKS__)
    inline bool isnan(const float& v) { return _isnan(v); }
    inline bool isnan(const double& v) { return _isnan(v); }
#elif defined(sun) || defined(__sun)
#    if defined(__SVR4) || defined(__svr4__)
/* Solaris */
    inline bool isnan(const float& v)  { return ( ::isnan(v) ); }
    inline bool isnan(const double& v) { return ( ::isnan(v) ); }
#    else
/* SunOS */
    inline bool isnan(const float& v)  { return ( ::isnan(v) ); }
    inline bool isnan(const double& v) { return ( ::isnan(v) ); }
#   endif
#else
    inline bool isnan(const float& v)  { return ( std::isnan(v) ); }
    inline bool isnan(const double& v) { return ( std::isnan(v) ); }
#endif

/* #if defined(WIN32) || defined(_MSC_VER) && !defined(__CYGWIN__) && !defined(__MWERKS__) */
/*     inline bool isnan(const float& v) { return _isnan(v); } */
/*     inline bool isnan(const double& v) { return _isnan(v); } */
/* #else */
/*     inline bool isnan(const float& v)  { return ( std::isnan(v) ); } */
/*     inline bool isnan(const double& v) { return ( std::isnan(v) ); } */
/* #endif */

    /** @brief Class lets us see bit patterns of floats. */
    class OSSIM_DLL IntFloatBitCoercion
    {
    public:
       union
       { 
          ossim_int64 intname;
          ossim_float64 floatname;
       } bits;
       IntFloatBitCoercion(ossim_int64 x)   { bits.intname = x;   }
       IntFloatBitCoercion(ossim_float64 x) { bits.floatname = x; }
    };
    
    /**
     * @brief Declaration of nan part of nan() declared here for inline
     * ossim::nan().
     */
    extern OSSIM_DLL_DATA(const IntFloatBitCoercion) nanValue;
    
    /**
     * @brief Method to return ieee floating point double precision NAN.
     *
     * @return ieee floating point double precision NAN.
     *
     * @see isnan()
     *
     * @note casts seamlessly to float and long double.
     *
     * @note Use ossim::isnan(v) to test for nan.
     * Like "if (isnan(myDoubleValue)) { doSomething; }"
     * DO NOT USE operator==.  Like "if (myDoubleValue == ossim::nan())"
     */
    inline double nan() { return nanValue.bits.floatname; }

   template <class T>
   inline T abs(const T& value)
   {
      if(value < 0)
      {
         return -value;
      }
      return value;
   }
    template <class S, class T> 
    inline T lerp(S x, T begin, T end)
	// linear interpolation from begin to end by x
	{ return x*(end - begin) + begin; }
    
    template <class T> 
    inline T inverseLerp(T x, T begin, T end)
	// inverse of lerp: if lerp(z,begin,end) = x, then inverseLerp(x,begin,end) = z.
        // when begin=end, inverseLerp is underconstrained, so we define it to be 0.
	{ return begin == end ? (ossim::isnan(x) ? x : T(0)) : (x - begin)/(end - begin); }

    template <class S, class T> 
    T quaderp(S x, T begin, T middle, T end)
	// quadratic interpolation through begin,middle,end by x
	{
	    // newton interpolation
	    const T a1 = S(2)*(middle - begin);
	    const T a2 = S(2)*(end - middle) - a1;
	    return x*((x - S(0.5))*a2 + a1) + begin;
	}

    template <class T> 
    inline T clamp(T x, T a, T b)
	// clamp x to [a, b]
	{
	    ossimREQUIRE(a <= b);  // input must make sense, disallow nans 
	    
            if (ossim::isnan(x)) return x;
            if (x < a) return a;
            if (b < x) return b;
            return x;
	}
    
    template <class T>
    T wrap(T x, T a, T b)
	// wrap x modularly into [a,b)
	{
	    ossimREQUIRE(a <= b);  // input must make sense, disallow nans 
	    
	    if (a == b && !ossim::isnan(x))
		return a;
	    else {
		T z = x < a ? b : a;
		return std::fmod(x - z, b - a) + z;
	    }
	}

    // XXX to Garrett from PJM:
    //     min and max routines. std::min/max do not in fact correctly handle nan.  
    //     this is troublesome, i think my code always was asserting no nans before values got
    //     through std::min/std::max.  i agree with you that if any of the input is nan,
    //     then the result should be nan, but the STL doesn't really consider the possibility
    //     that inputs to min/max have a "strange" ordering to them.  we could overload
    //     std::min/max to do this behavior but that's evil. for all my whining, i think
    //     we should have ossim::max/max that do the right thing wrt nan.  however:
    //     if we "correctly" handle nans like this, does that subtly break any existing code?
    template <class T>
    inline T min(T a, T b)
       // min of a,b; nan if either a or b are nan
    {
       return (a < b) ? a : b;
    }
    
    template <>
    inline ossim_float32 min<ossim_float32>(ossim_float32 a, ossim_float32 b)
    {
       if (ossim::isnan(a)||ossim::isnan(b))
       {
          return ossim::nan();
       }
       else
       {
          return (a < b) ? a : b;
       }
    }
    
    template <>
    inline ossim_float64  min<ossim_float64>(ossim_float64  a, ossim_float64 b)
    {
       if (ossim::isnan(a)||ossim::isnan(b))
       {
          return ossim::nan();
       }
       else
       {
          return (a < b) ? a : b;
       }
    }
    
    template <class T>
    inline T max(T a, T b)
       // max of a,b; nan if either a or b are nan
    {
       return (a < b) ? b : a;
    }
    template <>
    inline ossim_float32 max<ossim_float32>(ossim_float32 a, ossim_float32 b)
    {
       if (ossim::isnan(b))
          return b;
       else
          return (a < b) ? b : a;       
    }
    template <>
    inline ossim_float64 max<ossim_float64>(ossim_float64 a, ossim_float64 b)
    {
       if (ossim::isnan(b))
          return b;
       else
          return (a < b) ? b : a;       
    }
    inline double radiansToDegrees(double x) { return x*DEG_PER_RAD;}
    inline double degreesToRadians(double x) { return x*RAD_PER_DEG;}
    inline double cosd(double x)             { return std::cos(x*RAD_PER_DEG); }
    inline double sind(double x)             { return std::sin(x*RAD_PER_DEG); }
    inline double tand(double x)             { return std::tan(x*RAD_PER_DEG); }
        // trig fncs with parameter in degrees
        
    inline double acosd(double x)            { return DEG_PER_RAD*std::acos(x); }
    inline double asind(double x)            { return DEG_PER_RAD*std::asin(x); }
    inline double atand(double x)            { return DEG_PER_RAD*std::atan(x); }
    inline double atan2d(double y, double x) { return DEG_PER_RAD*std::atan2(y,x); }
        // trig fncs with result in degrees

    template <class IntType>
    IntType gcd(IntType n, IntType m)
        // greatest common divisor of two ints
        // NB: We use n and m as temporaries in this function, so there is no value
        //     in using const IntType& as we would only need to make a copy anyway...
        {
            IntType zero(0);    // Avoid repeated construction
            
            // This is abs() - given the existence of broken compilers with Koenig
            // lookup issues and other problems, I code this explicitly. (Remember,
            // IntType may be a user-defined type).
            if (n < zero)
                n = -n;
            if (m < zero)
                m = -m;
            
            // As n and m are now positive, we can be sure that %= returns a
            // positive value (the standard guarantees this for built-in types,
            // and we require it of user-defined types).
            for (;;) {
                if (m == zero)
                    return n;
                n %= m;
                if (n == zero)
                    return m;
                m %= n;
            }
        }

    template <>
    inline int gcd<int>(int n, int m)
        // greatest common divisor specialize for int.
        // XXX this is the old gcd, the above code is the old ossimGcd().
        //     i made this a specialization of the template above,
        //     is this really necessary or more efficient, or can we safely delete this specialization?
        //     i don't know why this fnc must be decled inline, otherwise there's a compile error.
        //     the simple test case doesn't have this problem.
        { 
            if (m == 0)
                return n;
            else
                return gcd(m, n % m);  // gcc can optimize tail calls right?
        }

    template <class IntType>
    IntType lcm(IntType n, IntType m)
        // least common multiple
        // NB: We use n and m as temporaries in this function, so there is no value
        //     in using const IntType& as we would only need to make a copy anyway...
        {
            IntType zero(0);    // Avoid repeated construction
            
            if (n == zero || m == zero) {
                return zero;
            } else {
                n /= gcd(n, m);
                n *= m;
                if (n < zero)
                    n = -n;
                return n;
            }
        }
    
    template<class T> 
    inline T square(T x)
        { return x*x; }
        
    // identical to copysign() but usable in templates
    template <class T>
    inline T sgn(T x) 
        // signum function, returns 0, 1, -1, or nan
        {
            const T table[] = {T(0), T(1), T(-1)};
            return table[((x < T(0)) << 1) | (x > T(0))];
        }
    template <>
    inline ossim_float32 sgn<ossim_float32>(ossim_float32 x) 
        // signum function, returns 0, 1, -1, or nan
        {
            const ossim_float32 table[] = {ossim_float32(0), ossim_float32(1), ossim_float32(-1)};
            return ossim::isnan(x) ? x : table[((x < ossim_float32(0)) << 1) | (x > ossim_float32(0))];
        }
    template <>
    inline ossim_float64 sgn(ossim_float64 x) 
        // signum function, returns 0, 1, -1, or nan
        {
            const ossim_float64 table[] = {ossim_float64(0), ossim_float64(1), ossim_float64(-1)};
            return ossim::isnan(x) ? x : table[((x < ossim_float64(0)) << 1) | (x > ossim_float64(0))];
        }

    template <class R, class F>    
    inline R round(F x)
        // correctly round a float, and cast to desired type R
        {
            R result = static_cast<R>((x < F(0)) ? std::ceil(x - F(0.5)) : std::floor(x + F(0.5)));
            
            ossimENSURE(ossim::isnan(x) == ossim::isnan(result));   // if x is nan, R must be a float type
            return result;
            
            // XXX is this better than use of ceil/floor?:    return static_cast<long long>((x < T(0)) ? x - T(0.5) : x + T(0.5));
        }

    inline double ft2mtrs(double feet)      { return (feet * MTRS_PER_FT); }
    inline double usft2mtrs(double feet)    { return (feet * US_METERS_PER_FT); }
    inline double mtrs2ft(double meters)    { return (meters / MTRS_PER_FT); }
    inline double mtrs2usft(double meters)  { return (meters / US_METERS_PER_FT); }
        // Common conversion functions

    template <class T>
    std::pair<T, T> quadraticRoots(T a, T b, T c)
	// evaluates quadradic formula (positive sqrt is first)
	{
            // XXX could suffer from catastrophic cancellation, 
            // see David Goldberg's "What Every Computer Scientist Should Know About Floating-Point Arithmetic"
	    T s = std::sqrt(b*b - T(4)*a*c);
	    T twoA = T(2)*a;
            return std::pair<T, T>((-b + s)/twoA, (-b - s)/twoA); 
	}

    template <class T>
    inline void memClear(T& var, int z = 0)
	// zero out a variable's memory (for a given value of zero)
	{ memset(&var, z, sizeof(T)); }

    template <class T>
    inline void memClear(T* var)
        // prevent user from accidentally passing in a pointer to his struct
        { ossimSTATIC_CHECK(false, YOU_PROBABLY_WANT_TO_MEMCLEAR_WHAT_THE_POINTER_POINTS_TO_NOT_THE_POINTER_ITSELF); }

    OSSIM_DLL ossimByteOrder byteOrder();
        // test endianness of current machine 

    // values for various scalar types
    OSSIM_DLL double defaultMin(ossimScalarType scalarType);
    OSSIM_DLL double defaultMax(ossimScalarType scalarType);
    OSSIM_DLL double defaultNull(ossimScalarType scalarType);
    OSSIM_DLL ossim_uint32 scalarSizeInBytes(ossimScalarType scalarType);
    
    /** @brief @return true if scalar type is signed, false if not. */
    OSSIM_DLL bool isSigned(ossimScalarType scalarType);

    /**
     * @brief Get actual bits per pixel for a given scalar type.
     * 
     * This is bits used.  (OSSIM_USHORT11 = 11)
     * 
     * @returns The actual bits per pixel.  This will return 0 if the
     * input connection is not hooked up or there is an unhandled scalar type.
     */
    OSSIM_DLL ossim_uint32 getActualBitsPerPixel(ossimScalarType scalarType);
    
    /**
     * @brief Get bits per pixel for a given scalar type.
     * 
     * This the total bits per pixel.  (OSSIM_USHORT11 = 16)
     * 
     * @returns The bits per pixel.  This will return 0 if the
     * input connection is not hooked up or there is an unhandled scalar type.
     */
    OSSIM_DLL ossim_uint32 getBitsPerPixel(ossimScalarType scalarType);  
        
    OSSIM_DLL void defaultTileSize(ossimIpt& tileSize);

    OSSIM_DLL std::string convertHtmlSpecialCharactersToNormalCharacter(const std::string& src);

    /** Heading pitch roll extraction from a matrix. */
    OSSIM_DLL bool matrixToHpr( ossim_float64 hpr[3],
                                const NEWMAT::Matrix& rotation );

    /** Heading pitch roll extraction from a matrix. */
    OSSIM_DLL bool matrixToHpr( ossim_float64 hpr[3],
                                const NEWMAT::Matrix& lsrMatrix,
                                const NEWMAT::Matrix& rotationalMatrix);
    
    OSSIM_DLL void lexQuotedTokens(const std::string& str,
                                   ossim_uint32 start,
                                   const char* whitespace,
                                   const char* quotes,
                                   std::vector<std::string>& tokens, bool& unbalancedQuotes);
        // lex str into tokens starting at position start using whitespace  
	//    chars as delimiters and quotes[0] and quotes[1] as the opening
	//    and closing quotation chars (for quoting tokens containing whitespace).
	//    unbalancedQuotes is true iff it aborted when detecting unbalanced quoting.
	// REQUIRE(whitespace != NULL);
	// REQUIRE(quotes != NULL);
	// REQUIRE(tokens != NULL);
	// REQUIRE(unbalancedQuotes != NULL);

}

#endif /* #ifndef COMMON_H */