This file is indexed.

/usr/include/d2/4.6/std/bind.d is in libphobos2-4.6-dev 0.29.1-4.6.3-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
// Written in the D programming language.

/**
 * $(RED This module has been deprecated. Use delegates for binding arguments to specific values.)
 * 
 * Bind function arguments to functions.
 *
 * References:
 *      $(LINK2 http://www.boost.org/libs/bind/bind.html, boost bind)
 * Macros:
 *      WIKI = Phobos/StdBind
 *
 * Copyright: Copyright Tomasz Stachowiak 2006 - 2009.
 * License:   <a href="http://www.boost.org/LICENSE_1_0.txt">Boost License 1.0</a>.
 * Authors:   Tomasz Stachowiak
 * Source: $(PHOBOSSRC std/_bind.d)
 */
/*          Copyright Tomasz Stachowiak 2006 - 2009.
 * Distributed under the Boost Software License, Version 1.0.
 *    (See accompanying file LICENSE_1_0.txt or copy at
 *          http://www.boost.org/LICENSE_1_0.txt)
 */
module std.bind;
deprecated:

import std.string : stdFormat = format;
import std.traits;
import std.typetuple;

struct DynArg(int i) {
        static assert (i >= 0);

        alias i argNr;
}


/**
        When passed to the 'bind' function, they will mark dynamic params - ones that aren't statically bound
        In boost, they're called __1, __2, __3, etc.. here __0, __1, __2, ...
*/
const DynArg!(0) _0;
const DynArg!(1) _1;            /// ditto
const DynArg!(2) _2;            /// ditto
const DynArg!(3) _3;            /// ditto
const DynArg!(4) _4;            /// ditto
const DynArg!(5) _5;            /// ditto
const DynArg!(6) _6;            /// ditto
const DynArg!(7) _7;            /// ditto
const DynArg!(8) _8;            /// ditto
const DynArg!(9) _9;            /// ditto



/*
        Detect if a given type is a DynArg of any index
*/
template isDynArg(T) {
        static if (is(typeof(T.argNr))) {                               // must have the argNr field
                static if(is(T : DynArg!(T.argNr))) {           // now check the exact type
                        static enum bool isDynArg = true;
                } else static enum bool isDynArg = false;
        } else static enum bool isDynArg = false;
}


/*
        Detect if a given type is a DynArg of the specified index
*/
template isDynArg(T, int i) {
        static enum bool isDynArg = is(T : DynArg!(i));
}


/*
        Converts a static array type to a dynamic array type
*/
template DynamicArrayType(T) {
        alias typeof(T[0])[] DynamicArrayType;
}


/*
        Assigns one entity to another. As static arrays don't like normal assignment, slice assignment is used for them.

        Params:
                a = destination
                b = source
*/
template _assign(T) {
        static if (isStaticArray!(T)) {
                void _assign(DynamicArrayType!(T) a, DynamicArrayType!(T) b) {
                        a[] = b[];
                }
        } else {
                void _assign(ref T a, ref T b) {
                        a = b;
                }
        }
}


/*
        Assigns and potentially converts one entity to another

        Normally, only implicit conversion is used, but when both operands are numeric types, an explicit cast is performed on them.

        Params:
                T = destination type
                a = destination
                Y = source type
                b = source
                copyStaticArrays = when a static array is assigned to a dynamic one, it sometimes has to be .dup'ed as the storage may exist in volatile locations
*/
template _assign(T, Y, bool copyStaticArrays = true) {
        static if (isStaticArray!(T)) {

                // if the destination is a static array, copy each element from the source to the destination by a foreach
                void _assign(DynamicArrayType!(T) a, DynamicArrayType!(Y) b) {
                        foreach (i, x; b) {
                                _assign!(typeof(a[i]), typeof(x))(a[i], x);
                        }
                }
        } else static if (!isStaticArray!(T) && isStaticArray!(Y)) {

                // the destination is a dynamic array and the source is a static array. this sometimes needs a .dup
                void _assign(ref T a, DynamicArrayType!(Y) b) {
                        static if (copyStaticArrays) {
                                a = b.dup;
                        } else {
                                a = b;
                        }
                }
        } else {

                // none of the items is a static array
                void _assign(ref T a, ref Y b) {
                        static if (IndexOf!(T, NumericTypes.type) != -1 && IndexOf!(Y, NumericTypes.type) != -1) {
                                a = cast(T)b;
                        } else {
                                a = b;
                        }
                }
        }
}



/**
        A simple tuple struct with some basic operations
*/
struct Tuple(T ...) {
        alias Tuple     meta;
        enum bool      expressionTuple = isExpressionTuple!(T);

        static if (!expressionTuple) {
                alias T type;           // a built-in tuple
                T                       value;          // a built-in tuple instance
        } else {
                alias T value;
        }


        enum int length = value.length;


        /**
                Statically yields a tuple type with an extra element added at its end
        */
        template appendT(X) {
                alias .Tuple!(T, X) appendT;
        }


        /**
                Yields a tuple with an extra element added at its end
        */
        appendT!(X) append(X)(X x) {
                appendT!(X) res;
                foreach (i, y; value) {
                        _assign!(typeof(y))(res.value[i], y);
                }
                _assign!(typeof(x))(res.value[$-1], x);
                return res;
        }


        /**
                Statically yields a tuple type with an extra element added at its beginning
        */
        template prependT(X) {
                alias .Tuple!(X, T) prependT;
        }


        /**
                Yields a tuple with an extra element added at its beginning
        */
        prependT!(X) prepend(X)(X x) {
                prependT!(X) res;
                foreach (i, y; value) {
                        _assign!(typeof(y))(res.value[i+1], y);
                }
                _assign!(typeof(x))(res.value[0], x);
                return res;
        }


        /**
                Statically concatenates this tuple type with another tuple type
        */
        template concatT(T ...) {
                static if (expressionTuple) {
                        alias .Tuple!(value, T) concatT;
                } else {
                        alias .Tuple!(type, T) concatT;
                }
        }


        string toString() {
                auto res = "(" ~ stdFormat(value[0]);
                foreach (x; value[1..$]) {
                        res ~= stdFormat(", ", x);
                }
                return res ~ ")";
        }
}


/**
        An empty tuple struct
*/
struct Tuple() {
        alias Tuple                                     meta;

        template EmptyTuple_(T ...) {
                alias T EmptyTuple_;
        }


        alias EmptyTuple_!()    type;           /// an empty built-in tuple
        alias EmptyTuple_!()    value;          /// an empty built-in tuple

        enum bool      expressionTuple = false;
        enum int       length = 0;


        template appendT(X) {
                alias .Tuple!(X) appendT;
        }
        alias appendT prependT;


        appendT!(X) append(X)(X x) {
                appendT!(X) res;
                foreach (i, y; value) {
                        _assign!(typeof(y))(res.value[i], y);
                }
                return res;
        }
        alias append prepend;


        // T - other tuple
        template concatT(T ...) {
                alias .Tuple!(T) concatT;
        }


        char[] toString() {
                return "()";
        }
}


/**
        Dynamically create a tuple from the given items
*/
Tuple!(T) tuple(T ...)(T t) {
        Tuple!(T) res;
        foreach (i, x; t) {
                _assign!(typeof(x))(res.value[i], x);
        }
        return res;
}


/**
        Checks whether a given type is the Tuple struct of any length
*/
template isTypeTuple(T) {
        static if (is(T.type)) {
                static if (is(T == Tuple!(T.type))) {
                        enum bool isTypeTuple = true;
                } else enum bool isTypeTuple = false;
        } else enum bool isTypeTuple = false;
}

unittest
{
    static assert(isTypeTuple!(Tuple!(int)));
    static assert(isTypeTuple!(Tuple!(float, char)));
    static assert(isTypeTuple!(Tuple!(double, float, int, char[])));
    static assert(isTypeTuple!(Tuple!(Object, creal, long)));
    static assert(!isTypeTuple!(Object));
    static assert(!isTypeTuple!(int));
}

template minNumArgs_impl(alias fn, fnT) {
        alias ParameterTypeTuple!(fnT) Params;
        Params params = void;

        template loop(int i = 0) {
                static assert (i <= Params.length);

                static if (is(typeof(fn(params[0..i])))) {
                        enum int res = i;
                } else {
                        alias loop!(i+1).res res;
                }
        }

        alias loop!().res res;
}
/**
        Finds the minimal number of arguments a given function needs to be provided
*/
template minNumArgs(alias fn, fnT = typeof(&fn)) {
        enum int minNumArgs = minNumArgs_impl!(fn, fnT).res;
}


// mixed into BoundFunc struct/class
template MBoundFunc() {
        // meta
        alias FAlias_                                                                                                   FAlias;
        alias FT                                                                                                                        FuncType;
        alias AllBoundArgs_                                                                             AllBoundArgs;           // all arguments given to bind() or bindAlias()

        static if (!is(typeof(FAlias) == EmptySlot)) {
                alias Tuple!(ParameterTypeTuple!(FT))                           RealFuncParams; // the parameters of the bound function
                alias FuncReferenceParamsAsPointers!(FAlias)    FuncParams;                     // references converted to pointers
        } else {
                alias Tuple!(ParameterTypeTuple!(FT))                   FuncParams;                     // the parameters of the bound function
        }

        alias ReturnType!(FT)                                                                           RetType;                                // the return type of the bound function
        alias ExtractedBoundArgs!(AllBoundArgs.type)    BoundArgs;                      // 'saved' arguments. this includes nested/composed functions


        // if bindAlias was used, we can detect default arguments and only demand the non-default arguments to be specified
        static if (!is(typeof(FAlias) == EmptySlot)) {
                enum int minFuncArgs = minNumArgs!(FAlias);

                alias ParamsPassMethodTuple!(FAlias)                    ParamPassingMethods;    // find out whether the function expects parameters by value or reference
        } else {
                enum int minFuncArgs = FuncParams.length;
        }

        // the parameters that our wrapper function must get
        alias getDynArgTypes!(FuncParams, AllBoundArgs, minFuncArgs).res.type   DynParams;

        // data
        FuncType                        fp;
        BoundArgs               boundArgs;

        // yields the number of bound-function parameters that are covered by the binding. takes tuple expansion into account
        template numFuncArgsReallyBound(int argI = 0, int fargI = 0, int bargI = 0) {

                // walk though all of AllBoundArgs
                static if (argI < AllBoundArgs.length) {

                        // the argI-th arg is a composed/nested function
                        static if (isBoundFunc!(AllBoundArgs.type[argI])) {
                                alias DerefFunc!(AllBoundArgs.type[argI]).RetType               FuncRetType;
                                enum int argLen = getArgLen!(FuncParams.type[fargI], FuncRetType);
                                enum int bargInc = 1;
                        }

                        // the argI-th arg is a dynamic argument whose value we will get in the call to func()
                        else static if (isDynArg!(AllBoundArgs.type[argI])) {
                                enum int argLen = getArgLen!(FuncParams.type[fargI], DynParams[AllBoundArgs.type[argI].argNr]);
                                enum int bargInc = 0;
                        }

                        // the argI-th arg is a statically bound argument
                        else {
                                enum int argLen = getArgLen!(FuncParams.type[fargI], BoundArgs.type[bargI]);
                                enum int bargInc = 1;
                        }

                        // iterate
                        enum int res = numFuncArgsReallyBound!(argI+1, fargI+argLen, bargI+bargInc).res;
                } else {
                        // last iteration

                        // the number of bound args is the number of arguments we've detected in this template loop
                        enum int res = fargI;

                        // make sure we'll copy all args the function is going to need
                        static assert (res >= minFuncArgs);
                }
        }

        enum int numSpecifiedParams = numFuncArgsReallyBound!().res;

        // it's a tuple type whose instance will be applied to the bound function
        alias Tuple!(FuncParams.type[0 .. numSpecifiedParams])  SpecifiedParams;


        // argI = indexes AllBoundArgs
        // fargI = indexes funcArgs
        // bargI = indexes boundArgs
        void copyArgs(int argI = 0, int fargI = 0, int bargI = 0)(ref SpecifiedParams funcArgs, DynParams dynArgs) {
                static if (argI < AllBoundArgs.length) {

                        // the argI-th arg is a composed/nested function
                        static if (isBoundFunc!(AllBoundArgs.type[argI])) {
                                alias DerefFunc!(AllBoundArgs.type[argI]).RetType               FuncRetType;
                                alias DerefFunc!(AllBoundArgs.type[argI]).DynParams     FuncDynParams;

                                // if FuncDynParams contains an empty slot, e.g. as in the case  bind(&f, bind(&g, _1), _0)
                                // then we cannot just apply the dynArgs tuple to the nested/composed function because it will have EmptySlot params
                                // while our dynArgs tuple will contain ordinary types
                                static if (ContainsEmptySlotType!(FuncDynParams)) {

                                        FuncDynParams funcParams;       // we'll fill it with values in a bit

                                        foreach (i, dummy_; dynArgs) {
                                                static if (!is(typeof(FuncDynParams[i] == EmptySlot))) {

                                                        // 3rd param is false because there is no need to .dup static arrays just for the function below this foreach
                                                        // the storage exists in the whole copyArgs function
                                                        // dynArgs[i] is used instead of dummy_ so that loop-local data isn't referenced in any dynamic arrays after the loop
                                                        _assign!(typeof(funcParams[i]), typeof(dummy_), false)(funcParams[i], dynArgs[i]);
                                                }
                                        }

                                        FuncRetType funcRet = boundArgs.value[bargI].func(funcParams);
                                } else {
                                        FuncRetType funcRet = boundArgs.value[bargI].func(dynArgs[0..FuncDynParams.length]);    // only give it as many dynParams as it needs
                                }

                                // we'll take data from the returned value
                                auto srcItem = &funcRet;

                                enum int bargInc = 1;                                                  // nested/composed functions belong to the boundArgs tuple
                                enum bool dupStaticArrays = true;              // because the function's return value is stored locally
                        }

                        // the argI-th arg is a dynamic argument whose value we will get in the call to func()
                        else static if (isDynArg!(AllBoundArgs.type[argI])) {

                                // we'll take data from dynArgs
                                auto srcItem = &dynArgs[AllBoundArgs.type[argI].argNr];

                                enum int bargInc = 0;                                                  // dynamic args don't belond to the boundArgs tuple
                                enum bool dupStaticArrays = true;              // because we get dynArgs on stack
                        }

                        // the argI-th arg is a statically bound argument
                        else {

                                // we'll take data directly from boundArgs
                                auto srcItem = &boundArgs.value[bargI];

                                enum int bargInc = 1;                                                  // statically bound args belong to the boundArgs tuple
                                enum bool dupStaticArrays = false;             // because the storage exists in boundArgs
                        }

                        // the number of bound-function parameters this argument will cover after tuple expansion
                        enum int argLen = getArgLen!(funcArgs.type[fargI], typeof(*srcItem));

                        static if (isTypeTuple!(typeof(*srcItem)) && !isTypeTuple!(funcArgs.type[fargI])) {
                                foreach (i, x; srcItem.value) {
                                        _assign!(funcArgs.type[fargI + i], typeof(x), dupStaticArrays)(funcArgs.value[fargI + i], x);
                                }
                        } else {
                                static assert (1 == argLen);
                                _assign!(funcArgs.type[fargI], typeof(*srcItem), dupStaticArrays)(funcArgs.value[fargI], *srcItem);
                        }

                        // because we might've just expended a tuple, this may be larger than one
                        static assert (argLen >= 1);

                        // we could've just used a dynamic arg (0) or a statically bound arg(1)
                        static assert (bargInc == 0 || bargInc == 1);


                        return copyArgs!(argI+1, fargI+argLen, bargI+bargInc)(funcArgs, dynArgs);
                } else {
                        // last iteration

                        // make sure we've copied all args the function will need
                        static assert (fargI >= minFuncArgs);
                }
        }


        static if (SpecifiedParams.length > 0) {
                /// The final wrapped function
                RetType func(DynParams dynArgs) {
                        SpecifiedParams funcArgs;
                        copyArgs!()(funcArgs, dynArgs);

                        // if the function expects any parameters passed by reference, we'll have to use the ptrApply template
                        // and convert pointers back to references by hand
                        static if (!is(typeof(FAlias) == EmptySlot) && IndexOf!(PassByRef, ParamPassingMethods.type) != -1) {

                                // function parameter type pointers (int, float*, ref char) -> (int*, float*, char*)
                                PointerTuple!(Tuple!(RealFuncParams.type[0 .. SpecifiedParams.length])) ptrs;

                                // initialize the 'ptrs' tuple instance
                                foreach (i, dummy_; funcArgs.value) {
                                        static if (is(ParamPassingMethods.type[i] == PassByRef)) {

                                                version (BindNoNullCheck) {}
                                                else {
                                                        assert (funcArgs.value[i], "references cannot be null");
                                                }

                                                ptrs.value[i] = funcArgs.value[i];
                                        } else {
                                                ptrs.value[i] = &funcArgs.value[i];
                                        }
                                }

                                // and call the function :)
                                ptrApply!(RetType, FuncType, ptrs.type)(fp, ptrs.value);
                        } else {

                                // ordinary call-by-tuple
                                return fp(funcArgs.value);
                        }
                }
        } else {
                /// The final wrapped function
                RetType func() {
                        return fp();
                }
        }

        /// The final wrapped function
        alias func call;


        /// The final wrapped function
        alias func opCall;


        /**
                The type of the delegate that may be returned from this object
        */
        template PtrType() {
                alias typeof(&(new BoundFunc).call) PtrType;
        }

        /**
                Get a delegate. Equivalent to getting it thru &amp;foo.call
        */
        PtrType!() ptr() {
                return &this.func;
        }
}


version (BindUseStruct) {
        template DerefFunc(T) {
                alias typeof(*T) DerefFunc;
        }

        /**
                A context for bound/curried functions
        */
        struct BoundFunc(FT, alias FAlias_, AllBoundArgs_) {
                mixin MBoundFunc;
        }
} else {
        template DerefFunc(T) {
                alias T DerefFunc;
        }

        /**
                A context for bound/curried functions
        */
        class BoundFunc(FT, alias FAlias_, AllBoundArgs_) {
                mixin MBoundFunc;
        }
}


/**
        bind() can curry or "bind" arguments of a function, producing a different function which requires less parameters,
        or a different order of parameters. It also allows function composition.

        The syntax of a bind() call is:

        bind(function or delegate pointer { , <b>argument</b> });

        <b>argument</b> can be one of:
        <ul>
        <li> static/bound argument (an immediate value) </li>
        <li> another bound function object </li>
        <li> dynamic argument, of the form __[0-9], e.g. __0, __3 or __9 </li>
        </ul>

        The result is a function object, which can be called using call(), func() or opCall().
        There also exists a convenience function, ptr() which returns a delegate to call/func/opCall

        The resulting delegate accepts exactly as many parameters as many distinct dynamic arguments were used.
---
- bind(&foo, _0, _1) // will yield a delegate accepting two parameters
- bind(&foo, _1, _0) // will yield a delegate accepting two parameters
- bind(&bar, _0, _1, _2, _0) // will yield a delegate accepting three parameters
---

        <br />
        <br />
        The types of dynamic parameters are extracted from the bound function itself and when necessary, type negotiation
        is performed. For example, binding a function
---
void foo(int a, long b)

// with:
bind(&foo, _0, _0)
---
        will result in a delegate accepting a single, optimal parameter type. The best type is computed
        using std.typetuple.DerivedToFront, so in case of an int and a long, long will be selected. Generally, bind will try to find
        a type that can be implicitly converted to all the other types a given dynamic parameter uses.
                Note: in case of numeric types, an explicit, but transparent (to the user) cast will be performed

        <br />
        Function composition works intuitively:
---
bind(&f1, bind(&f2, _0))
---

        which will yield a delegate, that takes the argument, calls f2, then uses the return value of f2 to call f1. Mathematically
        speaking, it will yield a function composition:
---
f1(f2(_0))
---

        When one function is composed multiple times, it will be called multiple times - Bind does no lazy evaluation, so
---
bind(&f3, bind(&f4, _0), bind(&f4, _0))
---
        will produce a delegate, which, upon calling, will invoke f4 two times to evaluate the arguments for f3 and then call f3


        One another feature that bind() supports is automatic tuple expansion. It means that having functions:
---
void foo(int a, int b)
Tuple!(int, int) bar()
---

        Allows them to be bound by writing:
---
bind(&foo, bind(&bar))
// or
bind(&foo, tuple(23, 45))
---
*/
typeof(new BoundFunc!(FT, NullAlias, Tuple!(ArgList))) bind(FT, ArgList...)(FT fp, ArgList args) {
        auto res = new DerefFunc!(ReturnType!(bind));
        res.fp = fp;
        extractBoundArgs!(0, 0, ArgList)(res.boundArgs, args);
        return res;
}


/**
        bindAlias() is similar to bind(), but it's more powerful. Use bindAlias() rather than bind() where possible. <br/>


        The syntax is:

        bindAlias!(Function)(argument, argument, argument, argument, ...);

        bindAlias takes advantage of using aliases directly, thus being able to extract default values from functions and not forcing the user
        to bind them. It doesn't, however mean that the resulting delegate can be called, omitting some of its parameters. It only means that these
        arguments that have default values in the function provided to bindAlias don't have to be bound explicitly.

        Additionally, bindAlias takes care of functions with out/ref parameters, by converting them to pointers internally. A function like:
---
void foo(ref a)
---
        can be bound using:
---
int x;
bindAlias!(foo)(&x);
---

        Note: there is no bind-time check for reference nullness, there is however a call-time check on all references which can be disabled
        by using version=BindNoNullCheck or compiling in release mode.
*/
template bindAlias(alias FT) {
        typeof(new BoundFunc!(typeof(&FT), FT, Tuple!(ArgList))) bindAlias(ArgList...)(ArgList args) {
                auto res = new DerefFunc!(ReturnType!(bindAlias));
                res.fp = &FT;
                extractBoundArgs!(0, 0, ArgList)(res.boundArgs, args);
                return res;
        }
}





/*
        Tells whether the specified type is a bound function
*/
template isBoundFunc(T) {
        static if (is(DerefFunc!(T).FuncType)) {
                static if (is(DerefFunc!(T).BoundArgs)) {
                        static if (is(typeof(DerefFunc!(T).FAlias))) {
                                static if (is(DerefFunc!(T) : BoundFunc!(DerefFunc!(T).FuncType, DerefFunc!(T).FAlias, DerefFunc!(T).AllBoundArgs))) {
                                        static enum bool isBoundFunc = true;
                                } else static enum bool isBoundFunc = false;
                        } else static enum bool isBoundFunc = false;
                } else static enum bool isBoundFunc = false;
        } else static enum bool isBoundFunc = false;
}


// all numeric types as of dmd.175
alias Tuple!(byte, ubyte, short, ushort, int, uint, long, ulong, /+cent, ucent, +/float, double, real, ifloat, idouble, ireal, cfloat, cdouble, creal) NumericTypes;



/*
        Gather all types that a given (i-th) dynamic arg uses.
        The types will be inserted into a tuple
*/
template dynArgTypes(int i, FuncParams, BoundArgs, int minParamsLeft) {

        // performs slicing on the tuple ... tuple[i .. $]
        template sliceOffTuple(T, int i) {
                alias Tuple!(T.type[i .. $]) res;
        }

        // prepends a T to the resulting tuple
        // SkipType - the type in BoundArgs that we're just processing
        template prependType(T, SkipType) {
                static if (isTypeTuple!(SkipType) && !isTypeTuple!(FuncParams.type[0])) {
                        // perform tuple decomposition
                        // e.g. if a function being bound is accepting (int, int) and the current type is a Tuple!(int, int),
                        // then skip just one tuple in the bound args and the length of the tuple in func args
                        // - skips two ints and one tuple in the example
                        alias dynArgTypes!(
                                        i,
                                        sliceOffTuple!(FuncParams, SkipType.length).res,
                                        Tuple!(BoundArgs.type[1..$]),
                                        minParamsLeft - SkipType.length
                                ).res tmp;

                } else {
                        // just advance by one type
                        alias dynArgTypes!(
                                        i,
                                        sliceOffTuple!(FuncParams, 1).res,
                                        Tuple!(BoundArgs.type[1..$]),
                                        minParamsLeft-1
                                ).res tmp;
                }

                static if (is(T == void)) {     // void means that we aren't adding anything
                        alias tmp res;
                } else {
                        alias tmp.meta.prependT!(T) res;
                }
        }

        // iteration end detector
        static if (is(BoundArgs == Tuple!())) {
                static assert (minParamsLeft <= 0, "there are still unbound function parameters");
                alias Tuple!() res;
        }
        else {

                // w00t, detected a regular dynamic arg
                static if (isDynArg!(BoundArgs.type[0], i)) {
                        alias prependType!(FuncParams.type[0], BoundArgs.type[0]).res res;
                }

                // the arg is a bound function, extract info from it. we will be evaluating it later
                else static if (isBoundFunc!(BoundArgs.type[0])) {
                        alias DerefFunc!(BoundArgs.type[0]) BoundFunc;          // the bound function is a struct pointer, we have to derefernce its type

                        // does that function even have any dynamic params ?
                        static if (BoundFunc.DynParams.length > i) {
                                alias prependType!(BoundFunc.DynParams[i], BoundFunc.RetType).res res;
                        }
                        // it doesn't
                        else {
                                alias prependType!(void, BoundFunc.RetType).res res;
                        }
                }

                // a static arg, just skip it since we want to find all types a given DynArg uses. static args <> dyn args
                else alias prependType!(void, BoundArgs.type[0]).res res;
        }
}


// just a simple util
private template maxInt(int a, int b) {
        static if (a > b) static enum int maxInt = a;
        else static enum int maxInt = b;
}


/*
        Given a list of BoundArgs, it returns the nuber of args that should be specified dynamically
*/
template numDynArgs(BoundArgs) {
        static if (BoundArgs.length == 0) {
                // received an EmptyTuple
                static enum int res = 0;
        } else {
                // ordinary dynamic arg
                static if (isDynArg!(BoundArgs.type[0])) {
                        static enum int res = maxInt!(BoundArgs.type[0].argNr+1, numDynArgs!(Tuple!(BoundArgs.type[1..$])).res);
                }

                // count the args in nested / composed functions
                else static if (isBoundFunc!(BoundArgs.type[0])) {
                        static enum int res = maxInt!(DerefFunc!(BoundArgs.type[0]).DynParams.length, numDynArgs!(Tuple!(BoundArgs.type[1..$])).res);
                }

                // statically bound arg, skip it
                else {
                        static enum int res = numDynArgs!(Tuple!(BoundArgs.type[1..$])).res;
                }
        }
}


/*
        Used internally to mark a parameter which is a dummy placeholder
        E.g. when using bind(&f, bind(&g, _1), _0), then the inner bound function will use an EmptySlot for its 0-th parameter
*/
struct EmptySlot {
        string toString( ) {
                return "_";
        }
}


/*
        Get a tuple of all dynamic args a function binding will need
        take nested/composed functions as well as tuple decomposition into account
*/
template getDynArgTypes(FuncParams, BoundArgs, int minFuncArgs) {
        template loop(int i) {
                static if (i < numDynArgs!(BoundArgs).res) {
                        alias dynArgTypes!(i, FuncParams, BoundArgs, minFuncArgs).res.type dirtyArgTypeList;

                        // 'clean' the type list, erasing all NoTypes from it that could've been added there from composed functions
                        // if the arg is not used, we'll mark it as NoType anyway, but for now, we only want 'real' types so the most derived one can be found
                        alias Tuple!(EraseAll!(EmptySlot, dirtyArgTypeList)) argTypeList;


                        // make sure the arg is used
                        static if(!is(argTypeList == Tuple!())) {
                                alias DerivedToFront!(argTypeList.type)[0] argType;
                        } else {
                                //static assert(false, i);
                                alias EmptySlot argType;
                        }

                        alias loop!(i+1).res.meta.prependT!(argType) res;
                } else {
                        alias Tuple!() res;
                }
        }

        alias loop!(0).res res;
}


/*
        Given a tuple that bind() was called with, it will detect which types need to be stored in a BoundFunc object
*/
template ExtractedBoundArgs(BoundArgs ...) {
        static if (BoundArgs.length == 0) {
                alias Tuple!() ExtractedBoundArgs;
        }

        // we'll store all non-dynamic arguments...
        else static if (!isDynArg!(BoundArgs[0])) {
                alias ExtractedBoundArgs!(BoundArgs[1..$]).meta.prependT!(BoundArgs[0]) ExtractedBoundArgs;
        }

        // ... and we're going to leave the dynamic ones for later
        else {
                alias ExtractedBoundArgs!(BoundArgs[1..$]) ExtractedBoundArgs;
        }
}


/*
        Given a tuple that bind() was called with, it will copy all data that a BoundFunc object will store into an ExtractedBoundArgs tuple
*/
void extractBoundArgs(int dst, int src, BoundArgs ...)(ref ExtractedBoundArgs!(BoundArgs) result, BoundArgs boundArgs) {
        static if (dst < result.length) {
                // again, we only want non-dynamic arguments here
                static if (!isDynArg!(BoundArgs[src])) {
                        _assign!(typeof(result.value[dst]), typeof(boundArgs[src]))(result.value[dst], boundArgs[src]);
                        return extractBoundArgs!(dst+1, src+1, BoundArgs)(result, boundArgs);
                }

                // the dynamic ones will be specified at the time BoundFunc.call() is invoked
                else {
                        return extractBoundArgs!(dst, src+1, BoundArgs)(result, boundArgs);
                }
        }
}


/*
        Number of args in the bound function that this Src arg will cover
*/
template getArgLen(Dst, Src) {
        // if the arg is a tuple and the target isn't one, it will be expanded/decomposed to the tuple's length
        static if (isTypeTuple!(Src) && !isTypeTuple!(Dst)) {
                static enum int getArgLen = Src.length;
        }

        // plain arg - it will use 1:1 mapping of functioni params to bound params
        else {
                static enum int getArgLen = 1;
        }
}


/*
        Tell whether a parameter type tuple contains an EmptySlot struct
*/
template ContainsEmptySlotType(ParamList ...) {
        enum bool ContainsEmptySlotType = -1 != IndexOf!(EmptySlot, ParamList);
}


// just something to be default in bind(). bindAlias() will use real aliases.
const EmptySlot NullAlias;




struct PassByCopy       {}
struct PassByRef        {}

template ParamsPassMethodTuple_impl(alias Func, int i = 0) {
        alias Tuple!(ParameterTypeTuple!(typeof(&Func)))        Params;

        static if (Params.length == i) {
                alias Tuple!() res;
        } else {
                Params params = void;
                enum params.type[i] constParam;

                // if the function expects references, it won't like our const.
                static if (is(typeof(Func(params.value[0..i], constParam, params.value[i+1..$])))) {
                        alias ParamsPassMethodTuple_impl!(Func, i+1).res.meta.prependT!(PassByCopy) res;
                } else {
                        alias ParamsPassMethodTuple_impl!(Func, i+1).res.meta.prependT!(PassByRef) res;
                }
        }
}

/*
        Detect parameter passing methods: PassByCopy or PassByRef[erence]
*/
template ParamsPassMethodTuple(alias Func) {
        alias ParamsPassMethodTuple_impl!(Func).res ParamsPassMethodTuple;
}


template FuncReferenceParamsAsPointers_impl(alias Func) {
        alias Tuple!(ParameterTypeTuple!(typeof(&Func)))        Params;
        alias ParamsPassMethodTuple!(Func)                                              PassMethods;

        template loop(int i) {
                static if (i == Params.length) {
                        alias Tuple!() res;
                } else {
                        static if (is(PassMethods.type[i] == PassByRef)) {
                                alias Params.type[i]*   type;
                        } else {
                                alias Params.type[i]    type;
                        }

                        alias loop!(i+1).res.meta.prependT!(type) res;
                }
        }

        alias loop!(0).res res;
}

/*
        Takes a function/delegate alias and converts its refence parameters to pointers. E.g.

        void function(int, ref char, float*)    ->   (int, char*, float*)
*/
template FuncReferenceParamsAsPointers(alias Func) {
        alias FuncReferenceParamsAsPointers_impl!(Func).res FuncReferenceParamsAsPointers;
}



/*
        Converts a tuple of types to a tuple containing pointer types of the original types
*/
template PointerTuple(T) {
        static if (T.length > 0) {
                alias PointerTuple!(Tuple!(T.type[1..$])).meta.prependT!(T.type[0]*) PointerTuple;
        } else {
                alias Tuple!() PointerTuple;
        }
}



/*
        Calls a function, dereferencing a pointer tuple for each argument
*/
RetType ptrApply(RetType, FN, T ...)(FN fn, T t) {
        static if (1 == T.length) {
                return fn(*t[0]);
        }
        else static if (2 == T.length) {
                return fn(*t[0], *t[1]);
        }
        else static if (3 == T.length) {
                return fn(*t[0], *t[1], *t[2]);
        }
        else static if (4 == T.length) {
                return fn(*t[0], *t[1], *t[2], *t[3]);
        }
        else static if (5 == T.length) {
                return fn(*t[0], *t[1], *t[2], *t[3], *t[4]);
        }
        else static if (6 == T.length) {
                return fn(*t[0], *t[1], *t[2], *t[3], *t[4], *t[5]);
        }
        else static if (7 == T.length) {
                return fn(*t[0], *t[1], *t[2], *t[3], *t[4], *t[5], *t[6]);
        }
        else static if (8 == T.length) {
                return fn(*t[0], *t[1], *t[2], *t[3], *t[4], *t[5], *t[6], *t[7]);
        }
        else static if (9 == T.length) {
                return fn(*t[0], *t[1], *t[2], *t[3], *t[4], *t[5], *t[6], *t[7], *t[8]);
        }
        else static if (10 == T.length) {
                return fn(*t[0], *t[1], *t[2], *t[3], *t[4], *t[5], *t[6], *t[7], *t[8], *t[9]);
        }
}