This file is indexed.

/usr/include/ql/pricingengines/basket/mcamericanbasketengine.hpp is in libquantlib0-dev 1.1-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2004 Neil Firth
 Copyright (C) 2006 Klaus Spanderen
 Copyright (C) 2007, 2008 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file mcamericanbasketengine.hpp
    \brief Least-square Monte Carlo engines
*/

#ifndef quantlib_american_basket_montecarlo_engine_hpp
#define quantlib_american_basket_montecarlo_engine_hpp

#include <ql/qldefines.hpp>
#include <ql/instruments/basketoption.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/processes/stochasticprocessarray.hpp>
#include <ql/methods/montecarlo/lsmbasissystem.hpp>
#include <ql/pricingengines/mclongstaffschwartzengine.hpp>
#include <ql/exercise.hpp>
#include <boost/function.hpp>

namespace QuantLib {

    //! least-square Monte Carlo engine
    /*! \warning This method is intrinsically weak for out-of-the-money
                 options.

        \ingroup basketengines
    */
    template <class RNG = PseudoRandom>
    class MCAmericanBasketEngine
        : public MCLongstaffSchwartzEngine<BasketOption::engine,
                                           MultiVariate,RNG> {
      public:
        MCAmericanBasketEngine(const boost::shared_ptr<StochasticProcessArray>&,
                               Size timeSteps,
                               Size timeStepsPerYear,
                               bool brownianBridge,
                               bool antitheticVariate,
                               Size requiredSamples,
                               Real requiredTolerance,
                               Size maxSamples,
                               BigNatural seed,
                               Size nCalibrationSamples = Null<Size>());
      protected:
        boost::shared_ptr<LongstaffSchwartzPathPricer<MultiPath> >
            lsmPathPricer() const;
    };


    //! Monte Carlo American basket-option engine factory
    template <class RNG = PseudoRandom>
    class MakeMCAmericanBasketEngine {
      public:
        MakeMCAmericanBasketEngine(
                            const boost::shared_ptr<StochasticProcessArray>&);
        // named parameters
        MakeMCAmericanBasketEngine& withSteps(Size steps);
        MakeMCAmericanBasketEngine& withStepsPerYear(Size steps);
        MakeMCAmericanBasketEngine& withBrownianBridge(bool b = true);
        MakeMCAmericanBasketEngine& withAntitheticVariate(bool b = true);
        MakeMCAmericanBasketEngine& withSamples(Size samples);
        MakeMCAmericanBasketEngine& withAbsoluteTolerance(Real tolerance);
        MakeMCAmericanBasketEngine& withMaxSamples(Size samples);
        MakeMCAmericanBasketEngine& withSeed(BigNatural seed);
        MakeMCAmericanBasketEngine& withCalibrationSamples(Size samples);
        // conversion to pricing engine
        operator boost::shared_ptr<PricingEngine>() const;
      private:
        boost::shared_ptr<StochasticProcessArray> process_;
        bool brownianBridge_, antithetic_;
        Size steps_, stepsPerYear_, samples_, maxSamples_, calibrationSamples_;
        Real tolerance_;
        BigNatural seed_;
    };


    class AmericanBasketPathPricer
        : public EarlyExercisePathPricer<MultiPath>  {
      public:
        AmericanBasketPathPricer(Size assetNumber,
                                 const boost::shared_ptr<Payoff>& payoff,
                                 Size polynomOrder = 2,
                                 LsmBasisSystem::PolynomType
                                 polynomType = LsmBasisSystem::Monomial);

        Array state(const MultiPath& path, Size t) const;
        Real operator()(const MultiPath& path, Size t) const;

        std::vector<boost::function1<Real, Array> > basisSystem() const;

      protected:
        Real payoff(const Array& state) const;

        const Size assetNumber_;
        const boost::shared_ptr<Payoff> payoff_;

        Real scalingValue_;
        std::vector<boost::function1<Real, Array> > v_;
    };

    template <class RNG> inline
    MCAmericanBasketEngine<RNG>::MCAmericanBasketEngine(
                   const boost::shared_ptr<StochasticProcessArray>& processes,
                   Size timeSteps,
                   Size timeStepsPerYear,
                   bool brownianBridge,
                   bool antitheticVariate,
                   Size requiredSamples,
                   Real requiredTolerance,
                   Size maxSamples,
                   BigNatural seed,
                   Size nCalibrationSamples)
        : MCLongstaffSchwartzEngine<BasketOption::engine,
                                    MultiVariate,RNG>(processes,
                                                      timeSteps,
                                                      timeStepsPerYear,
                                                      brownianBridge,
                                                      antitheticVariate,
                                                      false,
                                                      requiredSamples,
                                                      requiredTolerance,
                                                      maxSamples,
                                                      seed,
                                                      nCalibrationSamples) {}

    template <class RNG>
    inline boost::shared_ptr<LongstaffSchwartzPathPricer<MultiPath> >
    MCAmericanBasketEngine<RNG>::lsmPathPricer() const {

        boost::shared_ptr<StochasticProcessArray> processArray =
            boost::dynamic_pointer_cast<StochasticProcessArray>(
                                                              this->process_);
        QL_REQUIRE(processArray && processArray->size()>0,
                   "Stochastic process array required");

        boost::shared_ptr<GeneralizedBlackScholesProcess> process =
            boost::dynamic_pointer_cast<GeneralizedBlackScholesProcess>(
               processArray->process(0));
        QL_REQUIRE(process, "generalized Black-Scholes process required");

        boost::shared_ptr<EarlyExercise> exercise =
            boost::dynamic_pointer_cast<EarlyExercise>(
                this->arguments_.exercise);
        QL_REQUIRE(exercise, "wrong exercise given");
        QL_REQUIRE(!exercise->payoffAtExpiry(),
                   "payoff at expiry not handled");

        boost::shared_ptr<AmericanBasketPathPricer> earlyExercisePathPricer(
            new AmericanBasketPathPricer(processArray->size(),
                                         this->arguments_.payoff));

        return boost::shared_ptr<LongstaffSchwartzPathPricer<MultiPath> > (
             new LongstaffSchwartzPathPricer<MultiPath>(
                     this->timeGrid(),
                     earlyExercisePathPricer,
                     *(process->riskFreeRate())));
    }


    template <class RNG>
    inline MakeMCAmericanBasketEngine<RNG>::MakeMCAmericanBasketEngine(
                     const boost::shared_ptr<StochasticProcessArray>& process)
    : process_(process), brownianBridge_(false), antithetic_(false),
      steps_(Null<Size>()), stepsPerYear_(Null<Size>()),
      samples_(Null<Size>()), maxSamples_(Null<Size>()),
      calibrationSamples_(Null<Size>()),
      tolerance_(Null<Real>()), seed_(0) {}

    template <class RNG>
    inline MakeMCAmericanBasketEngine<RNG>&
    MakeMCAmericanBasketEngine<RNG>::withSteps(Size steps) {
        steps_ = steps;
        return *this;
    }

    template <class RNG>
    inline MakeMCAmericanBasketEngine<RNG>&
    MakeMCAmericanBasketEngine<RNG>::withStepsPerYear(Size steps) {
        stepsPerYear_ = steps;
        return *this;
    }

    template <class RNG>
    inline MakeMCAmericanBasketEngine<RNG>&
    MakeMCAmericanBasketEngine<RNG>::withBrownianBridge(bool brownianBridge) {
        brownianBridge_ = brownianBridge;
        return *this;
    }

    template <class RNG>
    inline MakeMCAmericanBasketEngine<RNG>&
    MakeMCAmericanBasketEngine<RNG>::withAntitheticVariate(bool b) {
        antithetic_ = b;
        return *this;
    }

    template <class RNG>
    inline MakeMCAmericanBasketEngine<RNG>&
    MakeMCAmericanBasketEngine<RNG>::withSamples(Size samples) {
        QL_REQUIRE(tolerance_ == Null<Real>(),
                   "tolerance already set");
        samples_ = samples;
        return *this;
    }

    template <class RNG>
    inline MakeMCAmericanBasketEngine<RNG>&
    MakeMCAmericanBasketEngine<RNG>::withAbsoluteTolerance(Real tolerance) {
        QL_REQUIRE(samples_ == Null<Size>(),
                   "number of samples already set");
        QL_REQUIRE(RNG::allowsErrorEstimate,
                   "chosen random generator policy "
                   "does not allow an error estimate");
        tolerance_ = tolerance;
        return *this;
    }

    template <class RNG>
    inline MakeMCAmericanBasketEngine<RNG>&
    MakeMCAmericanBasketEngine<RNG>::withMaxSamples(Size samples) {
        maxSamples_ = samples;
        return *this;
    }

    template <class RNG>
    inline MakeMCAmericanBasketEngine<RNG>&
    MakeMCAmericanBasketEngine<RNG>::withSeed(BigNatural seed) {
        seed_ = seed;
        return *this;
    }

    template <class RNG>
    inline MakeMCAmericanBasketEngine<RNG>&
    MakeMCAmericanBasketEngine<RNG>::withCalibrationSamples(Size samples) {
        calibrationSamples_ = samples;
        return *this;
    }

    template <class RNG>
    inline
    MakeMCAmericanBasketEngine<RNG>::operator
    boost::shared_ptr<PricingEngine>() const {
        QL_REQUIRE(steps_ != Null<Size>() || stepsPerYear_ != Null<Size>(),
                   "number of steps not given");
        QL_REQUIRE(steps_ == Null<Size>() || stepsPerYear_ == Null<Size>(),
                   "number of steps overspecified");
        return boost::shared_ptr<PricingEngine>(new
            MCAmericanBasketEngine<RNG>(process_,
                                        steps_,
                                        stepsPerYear_,
                                        brownianBridge_,
                                        antithetic_,
                                        samples_,
                                        tolerance_,
                                        maxSamples_,
                                        seed_,
                                        calibrationSamples_));
    }

}

#endif