/usr/include/rsl.h is in librsl-dev 1.42-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 | /*
NASA/TRMM, Code 910.1.
This is the TRMM Office Radar Software Library.
Copyright (C) 1996 John H. Merritt
Space Applications Corporation
Vienna, Virginia, a NASA/GSFC on-site contractor.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef _rsl_h
#define _rsl_h
/* Are we building the library? */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
/**********************************************************************/
/* Configure: Define USE_TWO_BYTE_PRECISION to have RSL store internal*/
/* values with two bytes. Otherwise, use one byte. */
/* It is a good idea to use two byte precision. */
/* See 'makefile' for an additional explaination. */
/* */
/**********************************************************************/
#define USE_TWO_BYTE_PRECISION
/**********************************************************************/
/* Configure: Define the file name of the red,green, and blue color */
/* color tables. This maps reflectance to color. */
/* This should be $(LIBDIR)/colors, from the makefile */
/* so you shouldn't have to modify anything here. */
/**********************************************************************/
#ifndef COLORDIR
#define COLORDIR DATADIR "/colors"
#endif
/* These are the color table indexes. See RSL_set/get_color_table. */
#define RSL_RED_TABLE 0
#define RSL_GREEN_TABLE 1
#define RSL_BLUE_TABLE 2
/* The default color tables for reflectivity, velocity, spectral width,
* height, rainfall, and zdr.
*/
#define REFL_RED_FILE COLORDIR "/red_reflectivity.clr"
#define REFL_GREEN_FILE COLORDIR "/grn_reflectivity.clr"
#define REFL_BLUE_FILE COLORDIR "/blu_reflectivity.clr"
#define VEL_RED_FILE COLORDIR "/red_velocity.clr"
#define VEL_GREEN_FILE COLORDIR "/grn_velocity.clr"
#define VEL_BLUE_FILE COLORDIR "/blu_velocity.clr"
#define SW_RED_FILE COLORDIR "/red_spectral_width.clr"
#define SW_GREEN_FILE COLORDIR "/grn_spectral_width.clr"
#define SW_BLUE_FILE COLORDIR "/blu_spectral_width.clr"
#define HEIGHT_RED_FILE COLORDIR "/red_height.clr"
#define HEIGHT_GREEN_FILE COLORDIR "/grn_height.clr"
#define HEIGHT_BLUE_FILE COLORDIR "/blu_height.clr"
#define RAINFALL_RED_FILE COLORDIR "/red_rainfall.clr"
#define RAINFALL_GREEN_FILE COLORDIR "/grn_rainfall.clr"
#define RAINFALL_BLUE_FILE COLORDIR "/blu_rainfall.clr"
/* Added by D. Wolff 07/31/97 */
#define ZDR_RED_FILE COLORDIR "/red_zdr.clr"
#define ZDR_GREEN_FILE COLORDIR "/grn_zdr.clr"
#define ZDR_BLUE_FILE COLORDIR "/blu_zdr.clr"
/*************************************************************************/
/* You should not have to change anything below this line.
* The rest is my fault.
*/
/*************************************************************************/
#include <stdio.h>
/*
* Magic numbers. These are used to uniquely identify the type of
* values present in a particular structure: Volume, Sweep, Ray.
* The magic numbers V_DZ, V_VR, V_SW, etc. represent Volume magic
* numbers for the field types DZ, VR, SW, etc. Similiar magic numbers
* are implimented for Sweep, and Ray. The magic number is the first word
* of the data structure. These magic number may determine which conversion
* function is used, see volume.c and the end of this file for the
* conversion functions. (As of v0.39 -- NOT YET IMPLEMENTED.)
*/
enum Rsl_magic_num {
V_DZ, V_VR, V_SW, V_CZ, V_ZT, V_DR, V_LR,
S_DZ, S_VR, S_SW, S_CZ, S_ZT, S_DR, S_LR,
R_DZ, R_VR, R_SW, R_CZ, R_ZT, R_DR, R_LR
};
/* File format types recognized by RSL. */
enum File_type {UNKNOWN, WSR88D_FILE, UF_FILE, LASSEN_FILE,
TOGA_FILE, NSIG_FILE_V1, NSIG_FILE_V2,
RSL_FILE, MCGILL_FILE, HDF_FILE, RAPIC_FILE,
RADTEC_FILE, EDGE_FILE, DORADE_FILE, RAINBOW_FILE};
/* Pick a BADVAL that is out of range. That is, the range
* of the conversion cannot include these reserved values.
* Typically, pick a number that cannot be stored in the Range data type.
*/
#ifdef USE_TWO_BYTE_PRECISION
typedef unsigned short Range;
#define BADVAL (float)0x20000
#else
typedef unsigned char Range;
#define BADVAL (float)0500 /* non-meaningful value (500 octal) */
#endif
#define RFVAL (BADVAL-1) /* Range folded value. See rfival. */
#define APFLAG (BADVAL-2)
#define NOTFOUND_H (BADVAL-3)
#define NOTFOUND_V (BADVAL-4)
#define NOECHO (BADVAL-5) /* For nsig and UF -32, for kwaj -30 */
#define RSL_SPEED_OF_LIGHT 299792458.0 /* m/s */
typedef struct {
int month; /* Time for this ray; month (1-12). */
int day; /* Time for this ray; day (1-31). */
int year; /* Time for this ray; year (eg. 1993). */
int hour; /* Date for this ray; hour (0-23). */
int minute;/* Date for this ray; minute (0-59).*/
float sec; /* Date for this ray; second + fraction of second. */
float unam_rng; /* Unambiguous range. (KM). */
float azimuth; /* Azimuth angle (degrees). Must be positive.
* 0=North, 90=east, -90/270=west.
* This angle is the mean azimuth for the whole ray.
* E.g. for NSIG the beginning and end azimuths are averaged.
*/
int ray_num; /* Ray no. within elevation scan. */
float elev; /* Elevation angle. (degrees). */
int elev_num; /* Elevation no. within volume scan. */
int range_bin1; /* Range to first gate.(meters) */
int gate_size; /* Data gate size (meters)*/
float vel_res; /* Doppler velocity resolution */
float sweep_rate; /* Sweep rate. Full sweeps/min. */
int prf; /* Pulse repetition frequency, in Hz. */
int prf2; /* Second PRF, for Sigmet dual PRF */
float azim_rate; /* Sweep rate in degrees/sec. */
float fix_angle; /* Elevation angle for the sweep. (degrees). */
float pitch; /* Pitch angle. */
float roll; /* Roll angle. */
float heading; /* Heading. */
float pitch_rate; /* (angle/sec) */
float roll_rate; /* (angle/sec) */
float heading_rate; /* (angle/sec) */
float lat; /* Latitude (degrees) */
float lon; /* Longitude (degrees) */
int alt; /* Altitude (m) */
float rvc; /* Radial velocity correction (m/sec) */
float vel_east; /* Platform velocity to the east (negative for west) (m/sec) */
float vel_north; /* Platform velocity to the north (negative south) (m/sec) */
float vel_up; /* Platform velocity toward up (negative down) (m/sec) */
int pulse_count; /* Pulses used in a single dwell time. */
float pulse_width; /* Pulse width (micro-sec). */
float beam_width; /* Beamwidth in degrees. */
float frequency; /* Carrier freq. GHz. */
float wavelength; /* Wavelength. Meters. */
float nyq_vel; /* Nyquist velocity. m/s */
float (*f)(Range x); /* Data conversion function. f(x). */
Range (*invf)(float x); /* Data conversion function. invf(x). */
int nbins; /* Number of array elements for 'Range'. */
} Ray_header;
typedef struct {
Ray_header h;
Range *range; /* range[0..nbins-1]
* For wsr88d file:
* 0..460 for reflectivity, 0..920 for velocity and
* spectrum width.
*/
} Ray;
typedef struct _azimuth_hash {
Ray *ray;
struct _azimuth_hash *next, *ray_high, *ray_low;
} Azimuth_hash;
typedef struct {
Azimuth_hash **indexes;
int nindexes;
} Hash_table;
typedef struct {
int sweep_num; /* Integer sweep number. This may be redundant, since
* this will be the same as the Volume.sweep array index.*/
float elev; /* Elevation angle (mean) for the sweep. Value is -999 for
* RHI. */
float azimuth; /* Azimuth for the sweep (RHI). Value is -999 for PPI. */
float beam_width; /* This is in the ray header too. */
float vert_half_bw; /* Vertical beam width divided by 2 */
float horz_half_bw; /* Horizontal beam width divided by 2 */
int nrays;
float (*f)(Range x); /* Data conversion function. f(x). */
Range (*invf)(float x); /* Data conversion function. invf(x). */
} Sweep_header;
typedef struct {
Sweep_header h;
Ray **ray; /* ray[0..nrays-1]. */
} Sweep;
typedef struct {
char *type_str; /* One of:'Reflectivity', 'Velocity' or 'Spectrum width' */
int nsweeps;
float calibr_const; /* Calibration constant. HDF specific. */
float (*f)(Range x); /* Data conversion function. f(x). */
Range (*invf)(float x); /* Data conversion function. invf(x). */
} Volume_header;
typedef struct {
Volume_header h; /* Specific info for each elev. */
/* Includes resolution: km/bin. */
Sweep **sweep; /* sweep[0..nsweeps-1]. */
} Volume;
typedef Range Carpi_value;
typedef Range Cappi_value;
typedef struct {
int month; /* (1-12). */
int day; /* (1-31). */
int year; /* (eg. 1993). */
int hour; /* (0-23). */
int minute; /* (0-59).*/
float sec; /* second + fraction of second. */
float dx, dy; /* Size of cell in km. */
int nx, ny; /* Number of cells. */
int radar_x, radar_y; /* Location of center of radar. */
float height; /* Height of this Carpi. */
float lat, lon; /* Lat/lon of lower left corner of Carpi. */
char radar_type[50]; /* Radar types. */
int field_type; /* Same as for Radar. */
int interp_method; /* ??? string describing interpolation method. */
float (*f)(Carpi_value x); /* Data conversion function. f(x). */
Carpi_value (*invf)(float x); /* Data conversion function. invf(x). */
Carpi_value **data; /* data[ny][nx] */
} Carpi;
/** Cappi data structure info **/
/* Paul A. Kucera **/
/* Element in location array of Cappi data structure.
* Each element is elvation and range to data value.
*/
typedef struct
{
float elev; /* elevation angle */
float srange; /* slant range !!! */
}
Er_loc;
/* Cappi data structure.
*/
typedef struct {
int month; /* Begin time for this Cappi; month (1-12). */
int day; /* Begin time for this Cappi; day (1-31). */
int year; /* Begin time for this Cappi; year (eg. 1993). */
int hour; /* Begin date for this Cappi; hour (0-23). */
int minute; /* Begin date for this Cappi; minute (0-59).*/
float sec; /* Begin date for this Cappi; second + frac. of second.*/
float height; /* Height for this Cappi in m */
float lat;
float lon;
int field_type; /* Value of Constant ??_INDEX */
char radar_type[50]; /* Value of Constant radar->h.radar_type */
int interp_method; /* ??? string describing interpolation method. */
Er_loc *loc; /* elevation and range coordinate array */
Sweep *sweep; /* Pointers to rays of data */
} Cappi;
/* The Cube data type. */
typedef Range Cube_value;
typedef Range Slice_value;
typedef struct
{
float lat, lon;
float dx, dy, dz;
int nx, ny, nz;
char *data_type;
Carpi **carpi; /* Pointers to carpi[0] thru carpi[nz-1] */
} Cube;
typedef struct
{
float dx, dy;
int nx, ny;
char *data_type;
float (*f)(Slice_value x); /* Data conversion function. f(x). */
Slice_value (*invf)(float x); /* Data conversion function. invf(x). */
Slice_value **data; /* data[ny][nx]. */
} Slice;
typedef struct {
int nbins;
int low;
int hi;
int ucount;
int ccount;
int *data;
} Histogram;
enum scan_mode {PPI, RHI};
typedef struct {
int month, day, year;
int hour, minute;
float sec; /* Second plus fractional part. */
char radar_type[50]; /* Type of radar. Use for QC-ing the data.
* Supported types are:
* "wsr88d", "lassen", "uf",
* "nsig", "mcgill",
* "kwajalein", "rsl", "toga",
* "rapic", (rapic is Berrimah Austrailia)
* "radtec", (SPANDAR radar at Wallops Is, VA)
* "EDGE",
* "dorade",
* "south_africa".
* Set by appropriate ingest routine.
*/
int nvolumes;
int number; /* arbitrary number of this radar site */
char name[8]; /* Nexrad site name */
char radar_name[8]; /* Radar name. */
char project[24]; /* Project identifier. */
char city[15]; /* nearest city to radar site */
char state[3]; /* state of radar site */
char country[15];
int latd; /* degrees of latitude of site */
int latm; /* minutes of latitude of site */
int lats; /* seconds of latitude of site */
int lond; /* degrees of longitude of site */
int lonm; /* minutes of longitude of site */
int lons; /* seconds of longitude of site */
int height; /* height of site in meters above sea level*/
int spulse; /* length of short pulse (ns)*/
int lpulse; /* length of long pulse (ns) */
int scan_mode; /* 0 = PPI, 1 = RHI */
int vcp; /* Volume Coverage Pattern (for WSR-88D only) */
} Radar_header;
typedef struct {
Radar_header h;
Volume **v; /* Array 0..nvolumes-1 of pointers to Volumes.
* 0 = DZ_INDEX = reflectivity.
* 1 = VR_INDEX = velocity.
* 2 = SW_INDEX = spectrum_width.
* 3 = CZ_INDEX = corrected reflectivity.
* 4 = ZT_INDEX = uncorrected reflectivity.
* 5 = DR_INDEX = differential refl.
* 6 = LR_INDEX = another differential refl.
* 7 = ZD_INDEX = another differential refl.
* 8 = DM_INDEX = received power.
* 9 = RH_INDEX = RhoHV: Horz-Vert power corr coeff
*10 = PH_INDEX = PhiDP: Differential phase angle
*11 = XZ_INDEX = X-band reflectivity.
*12 = CD_INDEX = Corrected DR.
*13 = MZ_INDEX = DZ mask for 1C-51 HDF.
*14 = MR_INDEX = DR mask for 1C-51 HDF.
*15 = ZE_INDEX = Edited reflectivity.
*16 = VE_INDEX = Edited velocity.
*17 = KD_INDEX = KDP: Specific differential phase, deg/km.
*18 = TI_INDEX = TIME (unknown) for MCTEX data.
*19 = DX_INDEX
*20 = CH_INDEX
*21 = AH_INDEX
*22 = CV_INDEX
*23 = AV_INDEX
*24 = SQ_INDEX = Signal Quality Index (Sigmet)
*25 = VS_INDEX = Radial Velocity Combined (DORADE)
*26 = VL_INDEX = Radial Velocity Combined (DORADE)
*27 = VG_INDEX = Radial Velocity Combined (DORADE)
*28 = VT_INDEX = Radial Velocity Combined (DORADE)
*29 = NP_INDEX = Normalized Coherent Power (DORADE)
*30 = HC_INDEX = HydroClass (Sigmet)
*31 = VC_INDEX = Radial Velocity Corrected (Sigmet)
*32 = V2_INDEX = Radial Velocity for VCP 121 second Doppler cut.
*33 = S2_INDEX = Spectrum Width for VCP 121 second Doppler cut.
*34 = V3_INDEX = Radial Velocity for VCP 121 third Doppler cut.
*35 = S3_INDEX = Spectrum Width for VCP 121 third Doppler cut.
*/
} Radar;
/*
* DZ Reflectivity (dBZ), may contain some DZ_INDEX
* signal-processor level QC and/or
* filters. This field would contain
* Darwin's CZ, or WSR88D's standard
* reflectivity. In other words, unless
* the field is described otherwise, it
* should always go here. In essence, this
* is the "cleanest" reflectivity field
* for a radar.
*
* VR Radial Velocity (m/s) VR_INDEX
*
* SW Spectral Width (m2/s2) SW_INDEX
*
* CZ QC Reflectivity (dBZ), contains
* post-processed QC'd data CZ_INDEX
*
* ZT Total Reflectivity (dBZ) ZT_INDEX
* Reflectivity unfiltered for clutter...
* This is UZ in UF files.
*
* DR Differential reflectivity DR_INDEX
* DR and LR are for dual-polarization
* radars only. Unitless or in dB.
*
* LR Another form of differential ref LR_INDEX
* called LDR, not sure of units
*
* ZD ZDR: Reflectivity Depolarization Ratio ZD_INDEX
* ZDR = 10log(ZH/ZV) (dB)
*
* DM Received power measured by the radar. DM_INDEX
* Units are dBm.
*
* RH RhoHV: Horz-Vert power correlation RH_INDEX
* coefficient. (0 to 1) See volume.c
*
* PH PhiDP: Differential phase angle. PH_INDEX
* (0 to 180 deg in steps of 0.71)
* See volume.c
*
* XZ X-band reflectivity XZ_INDEX
*
* CD Corrected ZD reflectivity (differential) CD_INDEX
* contains QC'ed data
*
* MZ DZ mask volume for HDF 1C-51 product. MZ_INDEX
*
* MD ZD mask volume for HDF 1C-51 product. MD_INDEX
*
* ZE Edited Reflectivity. ZE_INDEX
*
* VE Edited Velocity. VE_INDEX
*
* KD KDP (deg/km) Differencial Phase KD_INDEX
* (Sigmet, Lassen)
*
* TI TIME (unknown) for MCTEX data. TI_INDEX
*
* SQ SQI: Signal Quality Index. (Sigmet) SQ_INDEX
* Decimal fraction from 0 to 1, where 0
* is noise, 1 is noiseless.
*
* VS Radial Velocity, Short PRT (m/s) (DORADE) VS_INDEX
*
* VL Radial Velocity, Long PRT (m/s) (DORADE) VL_INDEX
*
* VG Radial Velocity, combined (m/s) (DORADE) VG_INDEX
*
* VT Radial Velocity, combined (m/s) (DORADE) VT_INDEX
*
* NP Normalized Coherent Power. (DORADE) NP_INDEX
*
* HC HydroClass: enumerated class. (Sigmet) HC_INDEX
*
* VC Radial Velocity corrected for (Sigmet) VC_INDEX
* Nyquist unfolding.
*/
/*
* The number of *_INDEX must never exceed MAX_RADAR_VOLUMES.
* Increase MAX_RADAR_VOLUMES appropriately, for new ingest formats.
*
* Also, when adding new *_INDEXes, you must update the following three arrays
* located near the end of this file: RSL_ftype, RSL_f_list, and RSL_invf_list.
* You also need to modify volume.c, updating the initialization of array
* rsl_qfield by adding a '1' for each new volume index.
*/
#define MAX_RADAR_VOLUMES 42
#define DZ_INDEX 0
#define VR_INDEX 1
#define SW_INDEX 2
#define CZ_INDEX 3
#define ZT_INDEX 4
#define DR_INDEX 5
#define LR_INDEX 6
#define ZD_INDEX 7
#define DM_INDEX 8
#define RH_INDEX 9
#define PH_INDEX 10
#define XZ_INDEX 11
#define CD_INDEX 12
#define MZ_INDEX 13
#define MD_INDEX 14
#define ZE_INDEX 15
#define VE_INDEX 16
#define KD_INDEX 17
#define TI_INDEX 18
#define DX_INDEX 19
#define CH_INDEX 20
#define AH_INDEX 21
#define CV_INDEX 22
#define AV_INDEX 23
#define SQ_INDEX 24
#define VS_INDEX 25
#define VL_INDEX 26
#define VG_INDEX 27
#define VT_INDEX 28
#define NP_INDEX 29
#define HC_INDEX 30
#define VC_INDEX 31
#define V2_INDEX 32
#define S2_INDEX 33
#define V3_INDEX 34
#define S3_INDEX 35
#define CR_INDEX 36
#define CC_INDEX 37
#define PR_INDEX 38
#define SD_INDEX 39
#define ZZ_INDEX 40
#define RD_INDEX 41
/* Prototypes for functions. */
/* Alphabetical and grouped by object returned. */
Radar *RSL_africa_to_radar(char *infile);
Radar *RSL_anyformat_to_radar(char *infile, ...);
Radar *RSL_dorade_to_radar(char *infile);
Radar *RSL_EDGE_to_radar(char *infile);
Radar *RSL_fix_radar_header(Radar *radar);
Radar *RSL_get_window_from_radar(Radar *r, float min_range, float max_range,float low_azim, float hi_azim);
Radar *RSL_hdf_to_radar(char *infile);
Radar *RSL_hdf_to_radar_unQC(char *infile);
Radar *RSL_kwaj_to_radar(char *infile);
Radar *RSL_lassen_to_radar(char *infile);
Radar *RSL_mcgill_to_radar(char *infile);
Radar *RSL_new_radar(int nvolumes);
Radar *RSL_nsig_to_radar(char *infile);
Radar *RSL_nsig2_to_radar(char *infile);
Radar *RSL_prune_radar(Radar *radar);
Radar *RSL_radtec_to_radar(char *infile);
Radar *RSL_rainbow_to_radar(char *infile);
Radar *RSL_rapic_to_radar(char *infile);
Radar *RSL_read_radar(char *infile);
Radar *RSL_sort_radar(Radar *r);
Radar *RSL_toga_to_radar(char *infile);
Radar *RSL_uf_to_radar(char *infile);
Radar *RSL_uf_to_radar_fp(FILE *fp);
Radar *RSL_wsr88d_to_radar(char *infile, char *call_or_first_tape_file);
Volume *RSL_clear_volume(Volume *v);
Volume *RSL_copy_volume(Volume *v);
Volume *RSL_fix_volume_header(Volume *v);
Volume *RSL_get_volume(Radar *r, int type_wanted);
Volume *RSL_get_window_from_volume(Volume *v, float min_range, float max_range, float low_azim, float hi_azim);
Volume *RSL_new_volume(int max_sweeps);
Volume *RSL_prune_volume(Volume *v);
Volume *RSL_read_volume(FILE *fp);
Volume *RSL_reverse_sweep_order(Volume *v);
Volume *RSL_sort_rays_in_volume(Volume *v);
Volume *RSL_sort_sweeps_in_volume(Volume *v);
Volume *RSL_sort_volume(Volume *v);
Volume *RSL_volume_z_to_r(Volume *z_volume, float k, float a);
Sweep *RSL_clear_sweep(Sweep *s);
Sweep *RSL_copy_sweep(Sweep *s);
Sweep *RSL_fix_sweep_header(Sweep *sweep);
Sweep *RSL_get_closest_sweep(Volume *v,float sweep_angle,float limit);
Sweep *RSL_get_eth_sweep(Volume *v,float et_point,float max_range);
Sweep *RSL_get_first_sweep_of_volume(Volume *v);
Sweep *RSL_get_sweep(Volume *v, float elev);
Sweep *RSL_get_window_from_sweep(Sweep *s, float min_range, float max_range, float low_azim, float hi_azim);
Sweep *RSL_new_sweep(int max_rays);
Sweep *RSL_prune_sweep(Sweep *s);
Sweep *RSL_read_sweep (FILE *fp);
Sweep *RSL_sort_rays_in_sweep(Sweep *s);
Sweep *RSL_sort_rays_by_time(Sweep *s);
Sweep *RSL_sweep_z_to_r(Sweep *z_sweep, float k, float a);
Ray *RSL_clear_ray(Ray *r);
Ray *RSL_copy_ray(Ray *r);
Ray *RSL_get_closest_ray_from_sweep(Sweep *s,float ray_angle,float limit);
Ray *RSL_get_first_ray_of_sweep(Sweep *s);
Ray *RSL_get_first_ray_of_volume(Volume *v);
Ray *RSL_get_closest_ray_from_sweep(Sweep *s,float ray_angle,float limit);
Ray *RSL_get_next_ccwise_ray(Sweep *s, Ray *ray);
Ray *RSL_get_next_cwise_ray(Sweep *s, Ray *ray);
Ray *RSL_get_ray(Volume *v, float elev, float azimuth);
Ray *RSL_get_ray_above(Volume *v, Ray *current_ray);
Ray *RSL_get_ray_below(Volume *v, Ray *current_ray);
Ray *RSL_get_ray_from_sweep(Sweep *s, float azim);
Ray *RSL_get_window_from_ray(Ray *r, float min_range, float max_range, float low_azim, float hi_azim);
Ray *RSL_new_ray(int max_bins);
Ray *RSL_prune_ray(Ray *ray);
Ray *RSL_ray_z_to_r(Ray *z_ray, float k, float a);
Ray *RSL_read_ray (FILE *fp);
float RSL_area_of_ray(Ray *r, float lo, float hi, float min_range, float max_range);
float RSL_fraction_of_ray(Ray *r, float lo, float hi, float range);
float RSL_fraction_of_sweep(Sweep *s, float lo, float hi, float range);
float RSL_fraction_of_volume(Volume *v, float lo, float hi, float range);
float RSL_fractional_area_of_sweep(Sweep *s, float lo, float hi, float min_rng, float max_rng);
float RSL_get_echo_top_height(Volume *v,float azim,float grange, float et_point);
float RSL_get_linear_value(Volume *v,float srange,float azim,float elev,float limit);
float RSL_get_nyquist_from_radar(Radar *radar);
float RSL_get_range_of_range_index(Ray *ray, int index);
float RSL_get_value(Volume *v, float elev, float azimuth, float range);
float RSL_get_value_at_h(Volume *v, float azim, float grnd_r, float h);
float RSL_get_value_from_cappi(Cappi *cappi, float rng, float azm);
float RSL_get_value_from_ray(Ray *ray, float r);
float RSL_get_value_from_sweep(Sweep *s, float azim, float r);
float RSL_z_to_r(float z, float k, float a);
int RSL_fill_cappi(Volume *v, Cappi *cap, int method);
int RSL_get_ray_index_from_sweep(Sweep *s, float azim,int *next_closest);
int RSL_get_sweep_index_from_volume(Volume *v, float elev,int *next_closest);
int RSL_radar_to_hdf(Radar *radar, char *outfile);
int RSL_write_histogram(Histogram *histogram, char *outfile);
int RSL_write_ray(Ray *r, FILE *fp);
int RSL_write_sweep(Sweep *s, FILE *fp);
int RSL_write_radar(Radar *radar, char *outfile);
int RSL_write_radar_gzip(Radar *radar, char *outfile);
int RSL_write_volume(Volume *v, FILE *fp);
unsigned char *RSL_rhi_sweep_to_cart(Sweep *s, int xdim, int ydim, float range,
int vert_scale);
unsigned char *RSL_sweep_to_cart(Sweep *s, int xdim, int ydim, float range);
void RSL_add_dbz_offset_to_ray(Ray *r, float dbz_offset);
void RSL_add_dbz_offset_to_sweep(Sweep *s, float dbz_offset);
void RSL_add_dbz_offset_to_volume(Volume *v, float dbz_offset);
void RSL_bscan_ray(Ray *r, FILE *fp);
void RSL_bscan_sweep(Sweep *s, char *outfile);
void RSL_bscan_volume(Volume *v, char *basename);
void RSL_find_rng_azm(float *r, float *ang, float x, float y);
void RSL_fix_time (Ray *ray);
void RSL_float_to_char(float *x, Range *c, int n);
void RSL_free_cappi(Cappi *c);
void RSL_free_carpi(Carpi *carpi);
void RSL_free_cube(Cube *cube);
void RSL_free_histogram(Histogram *histogram);
void RSL_free_ray(Ray *r);
void RSL_free_slice(Slice *slice);
void RSL_free_sweep(Sweep *s);
void RSL_free_radar(Radar *r);
void RSL_free_volume(Volume *v);
void RSL_get_color_table(int icolor, char buffer[256], int *ncolors);
void RSL_get_groundr_and_h(float slant_r, float elev, float *gr, float *h);
void RSL_get_slantr_and_elev(float gr, float h, float *slant_r, float *elev);
void RSL_get_slantr_and_h(float gr, float elev, float *slant_r, float *h);
void RSL_load_color_table(char *infile, char buffer[256], int *ncolors);
void RSL_load_height_color_table();
void RSL_load_rainfall_color_table();
void RSL_load_refl_color_table();
void RSL_load_vel_color_table();
void RSL_load_sw_color_table();
void RSL_load_zdr_color_table();
void RSL_load_red_table(char *infile);
void RSL_load_green_table(char *infile);
void RSL_load_blue_table(char *infile);
void RSL_print_histogram(Histogram *histogram, int min_range, int max_range,
char *filename);
void RSL_print_version();
void RSL_prune_radar_on();
void RSL_prune_radar_off();
void RSL_radar_to_uf(Radar *r, char *outfile);
void RSL_radar_to_uf_gzip(Radar *r, char *outfile);
void RSL_radar_verbose_off(void);
void RSL_radar_verbose_on(void);
void RSL_read_these_sweeps(char *csweep, ...);
void RSL_rebin_velocity_ray(Ray *r);
void RSL_rebin_velocity_sweep(Sweep *s);
void RSL_rebin_velocity_volume(Volume *v);
void RSL_rebin_zdr_ray(Ray *r);
void RSL_rebin_zdr_sweep(Sweep *s);
void RSL_rebin_zdr_volume(Volume *v);
void RSL_rhi_sweep_to_gif(Sweep *s, char *outfile, int xdim, int ydim, float range,
int vert_scale);
void RSL_select_fields(char *field_type, ...);
void RSL_set_color_table(int icolor, char buffer[256], int ncolors);
void RSL_sweep_to_gif(Sweep *s, char *outfile, int xdim, int ydim, float range);
void RSL_sweep_to_pgm(Sweep *s, char *outfile, int xdim, int ydim, float range);
void RSL_sweep_to_pict(Sweep *s, char *outfile, int xdim, int ydim, float range);
void RSL_sweep_to_ppm(Sweep *s, char *outfile, int xdim, int ydim, float range);
void RSL_volume_to_gif(Volume *v, char *basename, int xdim, int ydim, float range);
void RSL_volume_to_pgm(Volume *v, char *basename, int xdim, int ydim, float range);
void RSL_volume_to_pict(Volume *v, char *basename, int xdim, int ydim, float range);
void RSL_volume_to_ppm(Volume *v, char *basename, int xdim, int ydim, float range);
void RSL_write_gif(char *outfile, unsigned char *image,
int xdim, int ydim, char c_table[256][3]);
void RSL_write_pgm(char *outfile, unsigned char *image,
int xdim, int ydim);
void RSL_write_pict(char *outfile, unsigned char *image,
int xdim, int ydim, char c_table[256][3]);
void RSL_write_ppm(char *outfile, unsigned char *image,
int xdim, int ydim, char c_table[256][3]);
Cappi *RSL_new_cappi(Sweep *sweep, float height);
Cappi *RSL_cappi_at_h(Volume *v, float height, float max_range);
Carpi *RSL_cappi_to_carpi(Cappi *cappi, float dx, float dy,
float lat, float lon,
int nx, int ny, int radar_x, int radar_y);
Carpi *RSL_new_carpi(int nrows, int ncols);
Carpi *RSL_volume_to_carpi(Volume *v, float h, float grnd_r,
float dx, float dy, int nx, int ny,
int radar_x, int radar_y, float lat, float lon);
Cube *RSL_new_cube(int ncarpi);
Cube *RSL_volume_to_cube(Volume *v, float dx, float dy, float dz,
int nx, int ny, int nz, float grnd_r,
int radar_x, int radar_y, int radar_z);
Slice *RSL_new_slice(int nrows, int ncols);
Slice *RSL_get_slice_from_cube(Cube *cube, int x, int y, int z);
Histogram *RSL_allocate_histogram(int low, int hi);
Histogram *RSL_get_histogram_from_ray(Ray *ray, Histogram *histogram,
int low, int hi, int min_range,
int max_range);
Histogram *RSL_get_histogram_from_sweep(Sweep *sweep, Histogram *histogram,
int low, int hi, int min_range,
int max_range);
Histogram *RSL_get_histogram_from_volume(Volume *volume, Histogram *histogram,
int low, int hi, int min_range,
int max_range);
Histogram *RSL_read_histogram(char *infile);
int no_command (char *cmd);
FILE *uncompress_pipe (FILE *fp);
FILE *compress_pipe (FILE *fp);
int rsl_pclose(FILE *fp);
/* Carpi image generation functions. These are modified clones of the
corresponding sweep image generation functions.
*/
unsigned char *RSL_carpi_to_cart(Carpi *carpi, int xdim, int ydim,
float range);
void RSL_carpi_to_gif(Carpi *carpi, char *outfile, int xdim, int ydim,
float range);
void RSL_carpi_to_pict(Carpi *carpi, char *outfile, int xdim, int ydim,
float range);
void RSL_carpi_to_ppm(Carpi *carpi, char *outfile, int xdim, int ydim,
float range);
void RSL_carpi_to_pgm(Carpi *carpi, char *outfile, int xdim, int ydim,
float range);
/* Internal storage conversion functions. These may be any conversion and
* may be dynamically defined; based on the input data conversion.
*/
float DZ_F(Range x);
float VR_F(Range x);
float SW_F(Range x);
float CZ_F(Range x);
float ZT_F(Range x);
float DR_F(Range x);
float LR_F(Range x);
float ZD_F(Range x);
float DM_F(Range x);
float RH_F(Range x);
float PH_F(Range x);
float XZ_F(Range x);
float CD_F(Range x);
float MZ_F(Range x);
float MD_F(Range x);
float ZE_F(Range x);
float VE_F(Range x);
float KD_F(Range x);
float TI_F(Range x);
float DX_F(Range x);
float CH_F(Range x);
float AH_F(Range x);
float CV_F(Range x);
float AV_F(Range x);
float SQ_F(Range x);
float VS_F(Range x);
float VL_F(Range x);
float VG_F(Range x);
float VT_F(Range x);
float NP_F(Range x);
float HC_F(Range x);
float VC_F(Range x);
float SD_F(Range x);
Range DZ_INVF(float x);
Range VR_INVF(float x);
Range SW_INVF(float x);
Range CZ_INVF(float x);
Range ZT_INVF(float x);
Range DR_INVF(float x);
Range LR_INVF(float x);
Range ZD_INVF(float x);
Range DM_INVF(float x);
Range RH_INVF(float x);
Range PH_INVF(float x);
Range XZ_INVF(float x);
Range CD_INVF(float x);
Range MZ_INVF(float x);
Range MD_INVF(float x);
Range ZE_INVF(float x);
Range VE_INVF(float x);
Range KD_INVF(float x);
Range TI_INVF(float x);
Range DX_INVF(float x);
Range CH_INVF(float x);
Range AH_INVF(float x);
Range CV_INVF(float x);
Range AV_INVF(float x);
Range SQ_INVF(float x);
Range VS_INVF(float x);
Range VL_INVF(float x);
Range VG_INVF(float x);
Range VT_INVF(float x);
Range NP_INVF(float x);
Range HC_INVF(float x);
Range VC_INVF(float x);
Range SD_INVF(float x);
/* If you like these variables, you can use them in your application
* by defining USE_RSL_VARS before #include "rsl.h"
*/
#ifdef USE_RSL_VARS
static char *RSL_ftype[] = {"DZ", "VR", "SW", "CZ", "ZT", "DR",
"LR", "ZD", "DM", "RH", "PH", "XZ",
"CD", "MZ", "MD", "ZE", "VE", "KD",
"TI", "DX", "CH", "AH", "CV", "AV",
"SQ", "VS", "VL", "VG", "VT", "NP",
"HC", "VC", "V2", "S2", "V3", "S3",
"CR", "CC", "PR", "SD", "ZZ", "RD"};
static float (*RSL_f_list[])(Range x) = {DZ_F, VR_F, SW_F, CZ_F, ZT_F, DR_F,
LR_F, ZD_F, DM_F, RH_F, PH_F, XZ_F,
CD_F, MZ_F, MD_F, ZE_F, VE_F, KD_F,
TI_F, DX_F, CH_F, AH_F, CV_F, AV_F,
SQ_F, VS_F, VL_F, VG_F, VT_F, NP_F,
HC_F, VC_F, VR_F, SW_F, VR_F, SW_F,
DZ_F, CZ_F, PH_F, SD_F, DZ_F, DZ_F};
static Range (*RSL_invf_list[])(float x)
= {DZ_INVF, VR_INVF, SW_INVF, CZ_INVF, ZT_INVF, DR_INVF,
LR_INVF, ZD_INVF, DM_INVF, RH_INVF, PH_INVF, XZ_INVF,
CD_INVF, MZ_INVF, MD_INVF, ZE_INVF, VE_INVF, KD_INVF,
TI_INVF, DX_INVF, CH_INVF, AH_INVF, CV_INVF, AV_INVF,
SQ_INVF, VS_INVF, VL_INVF, VG_INVF, VT_INVF, NP_INVF,
HC_INVF, VC_INVF, VR_INVF, SW_INVF, VR_INVF, SW_INVF,
DZ_INVF, CZ_INVF, PH_INVF, SD_INVF, DZ_INVF, DZ_INVF};
#endif
/* Secret routines that are quite useful and useful to developers. */
void radar_load_date_time(Radar *radar);
int big_endian(void);
int little_endian(void);
void swap_4_bytes(void *word);
void swap_2_bytes(void *word);
Hash_table *hash_table_for_sweep(Sweep *s);
int hash_bin(Hash_table *table,float angle);
Azimuth_hash *the_closest_hash(Azimuth_hash *hash, float ray_angle);
Hash_table *construct_sweep_hash_table(Sweep *s);
double angle_diff(float x, float y);
int rsl_query_field(char *c_field);
/* Debugging prototypes. */
void poke_around_volume(Volume *v);
/* SYSTEM: left out prototypes? */
extern int pclose (FILE *f); /* From stdio.h */
#endif
|