This file is indexed.

/usr/include/shogun/features/SparseFeatures.h is in libshogun-dev 1.1.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2010 Soeren Sonnenburg
 * Written (W) 1999-2008 Gunnar Raetsch
 * Subset support written (W) 2011 Heiko Strathmann
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 * Copyright (C) 2010 Berlin Institute of Technology
 */

#ifndef _SPARSEFEATURES__H__
#define _SPARSEFEATURES__H__

#include <shogun/lib/common.h>
#include <shogun/lib/Cache.h>
#include <shogun/io/File.h>

#include <shogun/features/Labels.h>
#include <shogun/features/Features.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/features/SimpleFeatures.h>

namespace shogun
{

class CFile;
class CLabels;
class CFeatures;
class CDotFeatures;
template <class ST> class CSimpleFeatures;

/** @brief Template class SparseFeatures implements sparse matrices.
 *
 * Features are an array of SGSparseVector, sorted w.r.t. vec_index (increasing) and
 * withing same vec_index w.r.t. feat_index (increasing);
 *
 * Sparse feature vectors can be accessed via get_sparse_feature_vector() and
 * should be freed (this operation is a NOP in most cases) via
 * free_sparse_feature_vector().
 *
 * As this is a template class it can directly be used for different data types
 * like sparse matrices of real valued, integer, byte etc type.
 *
 * (Partly) subset access is supported for this feature type.
 * Simple use the (inherited) set_subset(), remove_subset() functions.
 * If done, all calls that work with features are translated to the subset.
 * See comments to find out whether it is supported for that method
 */
template <class ST> class CSparseFeatures : public CDotFeatures
{
	public:
		/** constructor
		 *
		 * @param size cache size
		 */
		CSparseFeatures(int32_t size=0);

		/** convenience constructor that creates sparse features from
		 * the ones passed as argument
		 *
		 * @param src dense feature matrix
		 * @param num_feat number of features
		 * @param num_vec number of vectors
		 * @param copy true to copy feature matrix
		 */
		CSparseFeatures(SGSparseVector<ST>* src,
				int32_t num_feat, int32_t num_vec,bool copy=false);

		/** convenience constructor that creates sparse features from
		 * sparse features
		 *
		 * @param sparse sparse matrix
		 */
		CSparseFeatures(SGSparseMatrix<ST> sparse);

		/** convenience constructor that creates sparse features from
		 * dense features
		 *
		 * @param dense dense feature matrix
		 */
		CSparseFeatures(SGMatrix<ST> dense);

		/** copy constructor */
		CSparseFeatures(const CSparseFeatures & orig);

		/** constructor loading features from file
		 *
		 * @param loader File object to load data from
		 */
		CSparseFeatures(CFile* loader);

		/** default destructor */
		virtual ~CSparseFeatures();

		/** free sparse feature matrix
		 *
		 * any subset is removed
		 */
		void free_sparse_feature_matrix();

		/** free sparse feature matrix and cache
		 *
		 * any subset is removed
		 */
		void free_sparse_features();

		/** duplicate feature object
		 *
		 * @return feature object
		 */
		virtual CFeatures* duplicate() const;

		/** get a single feature
		 *
		 * possible with subset
		 *
		 * @param num number of feature vector to retrieve
		 * @param index index of feature in this vector
		 *
		 * @return sum of features that match dimension index and 0 if none is found
		 */
		ST get_feature(int32_t num, int32_t index);

		/** converts a sparse feature vector into a dense one
		  * preprocessed compute_feature_vector
		  * caller cleans up
		  *
		  * @param num index of feature vector
		  * @param len length is returned by reference
		  * @return dense feature vector
		  */
		ST* get_full_feature_vector(int32_t num, int32_t& len);

		/** get the fully expanded dense feature vector num
		  *
		  * @return dense feature vector
		  * @param num index of feature vector
		  */
		SGVector<ST> get_full_feature_vector(int32_t num);

		/** get number of non-zero features in vector
		 *
		 * @param num which vector
		 * @return number of non-zero features in vector
		 */
		virtual int32_t get_nnz_features_for_vector(int32_t num);

		/** get sparse feature vector
		 * for sample num from the matrix as it is if matrix is initialized,
		 * else return preprocessed compute_feature_vector
		 *
		 * possible with subset
		 *
		 * @param num index of feature vector
		 * @return sparse feature vector
		 */
		SGSparseVector<ST> get_sparse_feature_vector(int32_t num);

		/** compute the dot product between two sparse feature vectors
		 * alpha * vec^T * vec
		 *
		 * @param alpha scalar to multiply with
		 * @param avec first sparse feature vector
		 * @param alen avec's length
		 * @param bvec second sparse feature vector
		 * @param blen bvec's length
		 * @return dot product between the two sparse feature vectors
		 */
		static ST sparse_dot(ST alpha, SGSparseVectorEntry<ST>* avec, int32_t alen,
				SGSparseVectorEntry<ST>* bvec, int32_t blen);

		/** compute the dot product between dense weights and a sparse feature vector
		 * alpha * sparse^T * w + b
		 *
		 * possible with subset
		 *
		 * @param alpha scalar to multiply with
		 * @param num index of feature vector
		 * @param vec dense vector to compute dot product with
		 * @param dim length of the dense vector
		 * @param b bias
		 * @return dot product between dense weights and a sparse feature vector
		 */
		ST dense_dot(ST alpha, int32_t num, ST* vec, int32_t dim, ST b);

		/** add a sparse feature vector onto a dense one
		 * dense+=alpha*sparse
		 *
		 * possible with subset
		 *
		 @param alpha scalar to multiply with
		 @param num index of feature vector
		 @param vec dense vector
		 @param dim length of the dense vector
		 @param abs_val if true, do dense+=alpha*abs(sparse)
		 */
		void add_to_dense_vec(float64_t alpha, int32_t num,
				float64_t* vec, int32_t dim, bool abs_val=false);

		/** free sparse feature vector
		 *
		 * possible with subset
		 *
		 * @param vec feature vector to free
		 * @param num index of this vector in the cache
		 */
		void free_sparse_feature_vector(SGSparseVector<ST> vec, int32_t num);

		/** get the pointer to the sparse feature matrix
		 * num_feat,num_vectors are returned by reference
		 *
		 * not possible with subset
		 *
		 * @param num_feat number of features in matrix
		 * @param num_vec number of vectors in matrix
		 * @return feature matrix
		 */
		SGSparseVector<ST>* get_sparse_feature_matrix(int32_t &num_feat, int32_t &num_vec);

		/** get the sparse feature matrix
		 *
		 * not possible with subset
		 *
		 * @return sparse matrix
		 *
		 */
        SGSparseMatrix<ST> get_sparse_feature_matrix();

		/** clean SGSparseVector
		 *
		 * @param sfm sparse feature matrix
		 * @param num_vec number of vectors in matrix
		 */
		static void clean_tsparse(SGSparseVector<ST>* sfm, int32_t num_vec);

		/** get a transposed copy of the features
		 *
		 * possible with subset
		 *
		 * @return transposed copy
		 */
		CSparseFeatures<ST>* get_transposed();

		/** compute and return the transpose of the sparse feature matrix
		 * which will be prepocessed.
		 * num_feat, num_vectors are returned by reference
		 * caller has to clean up
		 *
		 * possible with subset
		 *
		 * @param num_feat number of features in matrix
		 * @param num_vec number of vectors in matrix
		 * @return transposed sparse feature matrix
		 */
		SGSparseVector<ST>* get_transposed(int32_t &num_feat, int32_t &num_vec);

		/** set sparse feature matrix
		 *
		 * not possible with subset
		 *
		 * @param sm sparse feature matrix
		 *
		 */
        void set_sparse_feature_matrix(SGSparseMatrix<ST> sm);

		/** gets a copy of a full feature matrix
		 *
		 * possible with subset
		 *
		 * @return full dense feature matrix
		 */
		SGMatrix<ST> get_full_feature_matrix();

		/** creates a sparse feature matrix from a full dense feature matrix
		 * necessary to set feature_matrix, num_features and num_vectors
		 * where num_features is the column offset, and columns are linear in memory
		 * see above for definition of sparse_feature_matrix
		 *
		 * any subset is removed before
		 *
		 * @param full full feature matrix
		 */
		virtual bool set_full_feature_matrix(SGMatrix<ST> full);

		/** apply preprocessor
		 *
		 * possible with subset
		 *
		 * @param force_preprocessing if preprocssing shall be forced
		 * @return if applying was successful
		 */
		virtual bool apply_preprocessor(bool force_preprocessing=false);

		/** get memory footprint of one feature
		 *
		 * @return memory footprint of one feature
		 */
		virtual int32_t get_size();

		/** obtain sparse features from simple features
		 *
		 * subset on input is ignored, subset of this instance is removed
		 *
		 * @param sf simple features
		 * @return if obtaining was successful
		 */
		bool obtain_from_simple(CSimpleFeatures<ST>* sf);

		/** get number of feature vectors, possibly of subset
		 *
		 * @return number of feature vectors
		 */
		virtual int32_t  get_num_vectors() const;

		/** get number of features
		 *
		 * @return number of features
		 */
		int32_t  get_num_features();

		/** set number of features
		 *
		 * Sometimes when loading sparse features not all possible dimensions
		 * are used. This may pose a problem to classifiers when being applied
		 * to higher dimensional test-data. This function allows to
		 * artificially explode the feature space
		 *
		 * @param num the number of features, must be larger
		 *        than the current number of features
		 * @return previous number of features
		 */
		int32_t set_num_features(int32_t num);

		/** get feature class
		 *
		 * @return feature class SPARSE
		 */
		virtual EFeatureClass get_feature_class();

		/** get feature type
		 *
		 * @return templated feature type
		 */
		virtual EFeatureType get_feature_type();

		/** free feature vector
		 *
		 * possible with subset
		 *
		 * @param vec feature vector to free
		 * @param num index of vector in cache
		 */
		void free_feature_vector(SGSparseVector<ST> vec, int32_t num);

		/** get number of non-zero entries in sparse feature matrix
		 *
		 * @return number of non-zero entries in sparse feature matrix
		 */
		int64_t get_num_nonzero_entries();

		/** compute a^2 on all feature vectors
		 *
		 * possible with subset
		 *
		 * @param sq the square for each vector is stored in here
		 * @return the square for each vector
		 */
		float64_t* compute_squared(float64_t* sq);

		/** compute (a-b)^2 (== a^2+b^2-2ab)
		 * usually called by kernels'/distances' compute functions
		 * works on two feature vectors, although it is a member of a single
		 * feature: can either be called by lhs or rhs.
		 *
		 * possible wiht subsets on lhs or rhs
		 *
		 * @param lhs left-hand side features
		 * @param sq_lhs squared values of left-hand side
		 * @param idx_a index of left-hand side's vector to compute
		 * @param rhs right-hand side features
		 * @param sq_rhs squared values of right-hand side
		 * @param idx_b index of right-hand side's vector to compute
		 */
		float64_t compute_squared_norm(CSparseFeatures<float64_t>* lhs,
				float64_t* sq_lhs, int32_t idx_a,
				CSparseFeatures<float64_t>* rhs, float64_t* sq_rhs,
				int32_t idx_b);

		/** load features from file
		 *
		 * any subset is removed before
		 *
		 * @param loader File object to load data from
		 */
		void load(CFile* loader);

		/** save features to file
		 *
		 * not possible with subset
		 *
		 * @param writer File object to write data to
		 */
		void save(CFile* writer);

		/** load features from file
		 *
		 * any subset is removed before
		 *
		 * @param fname filename to load from
		 * @param do_sort_features if true features will be sorted to ensure they
		 * 		 are in ascending order
		 * @return label object with corresponding labels
		 */
		CLabels* load_svmlight_file(char* fname, bool do_sort_features=true);

		/** ensure that features occur in ascending order, only call when no
		 * preprocessors are attached
		 *
		 * not possiblwe with subset
		 * */
		void sort_features();

		/** write features to file using svm light format
		 *
		 * not possible with subset
		 *
		 * @param fname filename to write to
		 * @param label Label object (number of labels must correspond to number of features)
		 * @return true if successful
		 */
		bool write_svmlight_file(char* fname, CLabels* label);

		/** obtain the dimensionality of the feature space
		 *
		 * (not mix this up with the dimensionality of the input space, usually
		 * obtained via get_num_features())
		 *
		 * @return dimensionality
		 */
		virtual int32_t get_dim_feature_space() const;

		/** compute dot product between vector1 and vector2,
		 * appointed by their indices
		 *
		 * possible with subset of this instance and of DotFeatures
		 *
		 * @param vec_idx1 index of first vector
		 * @param df DotFeatures (of same kind) to compute dot product with
		 * @param vec_idx2 index of second vector
		 */
		virtual float64_t dot(int32_t vec_idx1, CDotFeatures* df, int32_t vec_idx2);

		/** compute dot product between vector1 and a dense vector
		 *
		 * possible with subset
		 *
		 * @param vec_idx1 index of first vector
		 * @param vec2 pointer to real valued vector
		 * @param vec2_len length of real valued vector
		 */
		virtual float64_t dense_dot(int32_t vec_idx1, const float64_t* vec2, int32_t vec2_len);

		#ifndef DOXYGEN_SHOULD_SKIP_THIS
		/** iterator for sparse features */
		struct sparse_feature_iterator
		{
			/** feature vector */
			SGSparseVector<ST> sv;

			/** index */
			int32_t index;

			/** print details of iterator (for debugging purposes)*/
			void print_info()
			{
				SG_SPRINT("sv=%p, vidx=%d, num_feat_entries=%d, index=%d\n",
						sv.features, sv.vec_index, sv.num_feat_entries, index);
			}
		};
		#endif

		/** iterate over the non-zero features
		 *
		 * call get_feature_iterator first, followed by get_next_feature and
		 * free_feature_iterator to cleanup
		 *
		 * possible with subset
		 *
		 * @param vector_index the index of the vector over whose components to
		 * 			iterate over
		 * @return feature iterator (to be passed to get_next_feature)
		 */
		virtual void* get_feature_iterator(int32_t vector_index);

		/** iterate over the non-zero features
		 *
		 * call this function with the iterator returned by get_first_feature
		 * and call free_feature_iterator to cleanup
		 *
		 * @param index is returned by reference (-1 when not available)
		 * @param value is returned by reference
		 * @param iterator as returned by get_first_feature
		 * @return true if a new non-zero feature got returned
		 */
		virtual bool get_next_feature(int32_t& index, float64_t& value, void* iterator);

		/** clean up iterator
		 * call this function with the iterator returned by get_first_feature
		 *
		 * @param iterator as returned by get_first_feature
		 */
		virtual void free_feature_iterator(void* iterator);

		/** Creates a new CFeatures instance containing copies of the elements
		 * which are specified by the provided indices.
		 *
		 * @param indices indices of feature elements to copy
		 * @return new CFeatures instance with copies of feature data
		 */
		virtual CFeatures* copy_subset(SGVector<index_t> indices);

		/** @return object name */
		inline virtual const char* get_name() const { return "SparseFeatures"; }

	protected:
		/** compute feature vector for sample num
		 * if target is set the vector is written to target
		 * len is returned by reference
		 *
		 * NOT IMPLEMENTED!
		 *
		 * @param num num
		 * @param len len
		 * @param target target
		 */
		virtual SGSparseVectorEntry<ST>* compute_sparse_feature_vector(int32_t num,
			int32_t& len, SGSparseVectorEntry<ST>* target=NULL);

	private:
		void init();

	protected:

		/// total number of vectors
		int32_t num_vectors;

		/// total number of features
		int32_t num_features;

		/// array of sparse vectors of size num_vectors
		SGSparseVector<ST>* sparse_feature_matrix;

		/** feature cache */
		CCache< SGSparseVectorEntry<ST> >* feature_cache;
};
}
#endif /* _SPARSEFEATURES__H__ */