/usr/include/shogun/features/SparseFeatures.h is in libshogun-dev 1.1.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 1999-2010 Soeren Sonnenburg
* Written (W) 1999-2008 Gunnar Raetsch
* Subset support written (W) 2011 Heiko Strathmann
* Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
* Copyright (C) 2010 Berlin Institute of Technology
*/
#ifndef _SPARSEFEATURES__H__
#define _SPARSEFEATURES__H__
#include <shogun/lib/common.h>
#include <shogun/lib/Cache.h>
#include <shogun/io/File.h>
#include <shogun/features/Labels.h>
#include <shogun/features/Features.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/features/SimpleFeatures.h>
namespace shogun
{
class CFile;
class CLabels;
class CFeatures;
class CDotFeatures;
template <class ST> class CSimpleFeatures;
/** @brief Template class SparseFeatures implements sparse matrices.
*
* Features are an array of SGSparseVector, sorted w.r.t. vec_index (increasing) and
* withing same vec_index w.r.t. feat_index (increasing);
*
* Sparse feature vectors can be accessed via get_sparse_feature_vector() and
* should be freed (this operation is a NOP in most cases) via
* free_sparse_feature_vector().
*
* As this is a template class it can directly be used for different data types
* like sparse matrices of real valued, integer, byte etc type.
*
* (Partly) subset access is supported for this feature type.
* Simple use the (inherited) set_subset(), remove_subset() functions.
* If done, all calls that work with features are translated to the subset.
* See comments to find out whether it is supported for that method
*/
template <class ST> class CSparseFeatures : public CDotFeatures
{
public:
/** constructor
*
* @param size cache size
*/
CSparseFeatures(int32_t size=0);
/** convenience constructor that creates sparse features from
* the ones passed as argument
*
* @param src dense feature matrix
* @param num_feat number of features
* @param num_vec number of vectors
* @param copy true to copy feature matrix
*/
CSparseFeatures(SGSparseVector<ST>* src,
int32_t num_feat, int32_t num_vec,bool copy=false);
/** convenience constructor that creates sparse features from
* sparse features
*
* @param sparse sparse matrix
*/
CSparseFeatures(SGSparseMatrix<ST> sparse);
/** convenience constructor that creates sparse features from
* dense features
*
* @param dense dense feature matrix
*/
CSparseFeatures(SGMatrix<ST> dense);
/** copy constructor */
CSparseFeatures(const CSparseFeatures & orig);
/** constructor loading features from file
*
* @param loader File object to load data from
*/
CSparseFeatures(CFile* loader);
/** default destructor */
virtual ~CSparseFeatures();
/** free sparse feature matrix
*
* any subset is removed
*/
void free_sparse_feature_matrix();
/** free sparse feature matrix and cache
*
* any subset is removed
*/
void free_sparse_features();
/** duplicate feature object
*
* @return feature object
*/
virtual CFeatures* duplicate() const;
/** get a single feature
*
* possible with subset
*
* @param num number of feature vector to retrieve
* @param index index of feature in this vector
*
* @return sum of features that match dimension index and 0 if none is found
*/
ST get_feature(int32_t num, int32_t index);
/** converts a sparse feature vector into a dense one
* preprocessed compute_feature_vector
* caller cleans up
*
* @param num index of feature vector
* @param len length is returned by reference
* @return dense feature vector
*/
ST* get_full_feature_vector(int32_t num, int32_t& len);
/** get the fully expanded dense feature vector num
*
* @return dense feature vector
* @param num index of feature vector
*/
SGVector<ST> get_full_feature_vector(int32_t num);
/** get number of non-zero features in vector
*
* @param num which vector
* @return number of non-zero features in vector
*/
virtual int32_t get_nnz_features_for_vector(int32_t num);
/** get sparse feature vector
* for sample num from the matrix as it is if matrix is initialized,
* else return preprocessed compute_feature_vector
*
* possible with subset
*
* @param num index of feature vector
* @return sparse feature vector
*/
SGSparseVector<ST> get_sparse_feature_vector(int32_t num);
/** compute the dot product between two sparse feature vectors
* alpha * vec^T * vec
*
* @param alpha scalar to multiply with
* @param avec first sparse feature vector
* @param alen avec's length
* @param bvec second sparse feature vector
* @param blen bvec's length
* @return dot product between the two sparse feature vectors
*/
static ST sparse_dot(ST alpha, SGSparseVectorEntry<ST>* avec, int32_t alen,
SGSparseVectorEntry<ST>* bvec, int32_t blen);
/** compute the dot product between dense weights and a sparse feature vector
* alpha * sparse^T * w + b
*
* possible with subset
*
* @param alpha scalar to multiply with
* @param num index of feature vector
* @param vec dense vector to compute dot product with
* @param dim length of the dense vector
* @param b bias
* @return dot product between dense weights and a sparse feature vector
*/
ST dense_dot(ST alpha, int32_t num, ST* vec, int32_t dim, ST b);
/** add a sparse feature vector onto a dense one
* dense+=alpha*sparse
*
* possible with subset
*
@param alpha scalar to multiply with
@param num index of feature vector
@param vec dense vector
@param dim length of the dense vector
@param abs_val if true, do dense+=alpha*abs(sparse)
*/
void add_to_dense_vec(float64_t alpha, int32_t num,
float64_t* vec, int32_t dim, bool abs_val=false);
/** free sparse feature vector
*
* possible with subset
*
* @param vec feature vector to free
* @param num index of this vector in the cache
*/
void free_sparse_feature_vector(SGSparseVector<ST> vec, int32_t num);
/** get the pointer to the sparse feature matrix
* num_feat,num_vectors are returned by reference
*
* not possible with subset
*
* @param num_feat number of features in matrix
* @param num_vec number of vectors in matrix
* @return feature matrix
*/
SGSparseVector<ST>* get_sparse_feature_matrix(int32_t &num_feat, int32_t &num_vec);
/** get the sparse feature matrix
*
* not possible with subset
*
* @return sparse matrix
*
*/
SGSparseMatrix<ST> get_sparse_feature_matrix();
/** clean SGSparseVector
*
* @param sfm sparse feature matrix
* @param num_vec number of vectors in matrix
*/
static void clean_tsparse(SGSparseVector<ST>* sfm, int32_t num_vec);
/** get a transposed copy of the features
*
* possible with subset
*
* @return transposed copy
*/
CSparseFeatures<ST>* get_transposed();
/** compute and return the transpose of the sparse feature matrix
* which will be prepocessed.
* num_feat, num_vectors are returned by reference
* caller has to clean up
*
* possible with subset
*
* @param num_feat number of features in matrix
* @param num_vec number of vectors in matrix
* @return transposed sparse feature matrix
*/
SGSparseVector<ST>* get_transposed(int32_t &num_feat, int32_t &num_vec);
/** set sparse feature matrix
*
* not possible with subset
*
* @param sm sparse feature matrix
*
*/
void set_sparse_feature_matrix(SGSparseMatrix<ST> sm);
/** gets a copy of a full feature matrix
*
* possible with subset
*
* @return full dense feature matrix
*/
SGMatrix<ST> get_full_feature_matrix();
/** creates a sparse feature matrix from a full dense feature matrix
* necessary to set feature_matrix, num_features and num_vectors
* where num_features is the column offset, and columns are linear in memory
* see above for definition of sparse_feature_matrix
*
* any subset is removed before
*
* @param full full feature matrix
*/
virtual bool set_full_feature_matrix(SGMatrix<ST> full);
/** apply preprocessor
*
* possible with subset
*
* @param force_preprocessing if preprocssing shall be forced
* @return if applying was successful
*/
virtual bool apply_preprocessor(bool force_preprocessing=false);
/** get memory footprint of one feature
*
* @return memory footprint of one feature
*/
virtual int32_t get_size();
/** obtain sparse features from simple features
*
* subset on input is ignored, subset of this instance is removed
*
* @param sf simple features
* @return if obtaining was successful
*/
bool obtain_from_simple(CSimpleFeatures<ST>* sf);
/** get number of feature vectors, possibly of subset
*
* @return number of feature vectors
*/
virtual int32_t get_num_vectors() const;
/** get number of features
*
* @return number of features
*/
int32_t get_num_features();
/** set number of features
*
* Sometimes when loading sparse features not all possible dimensions
* are used. This may pose a problem to classifiers when being applied
* to higher dimensional test-data. This function allows to
* artificially explode the feature space
*
* @param num the number of features, must be larger
* than the current number of features
* @return previous number of features
*/
int32_t set_num_features(int32_t num);
/** get feature class
*
* @return feature class SPARSE
*/
virtual EFeatureClass get_feature_class();
/** get feature type
*
* @return templated feature type
*/
virtual EFeatureType get_feature_type();
/** free feature vector
*
* possible with subset
*
* @param vec feature vector to free
* @param num index of vector in cache
*/
void free_feature_vector(SGSparseVector<ST> vec, int32_t num);
/** get number of non-zero entries in sparse feature matrix
*
* @return number of non-zero entries in sparse feature matrix
*/
int64_t get_num_nonzero_entries();
/** compute a^2 on all feature vectors
*
* possible with subset
*
* @param sq the square for each vector is stored in here
* @return the square for each vector
*/
float64_t* compute_squared(float64_t* sq);
/** compute (a-b)^2 (== a^2+b^2-2ab)
* usually called by kernels'/distances' compute functions
* works on two feature vectors, although it is a member of a single
* feature: can either be called by lhs or rhs.
*
* possible wiht subsets on lhs or rhs
*
* @param lhs left-hand side features
* @param sq_lhs squared values of left-hand side
* @param idx_a index of left-hand side's vector to compute
* @param rhs right-hand side features
* @param sq_rhs squared values of right-hand side
* @param idx_b index of right-hand side's vector to compute
*/
float64_t compute_squared_norm(CSparseFeatures<float64_t>* lhs,
float64_t* sq_lhs, int32_t idx_a,
CSparseFeatures<float64_t>* rhs, float64_t* sq_rhs,
int32_t idx_b);
/** load features from file
*
* any subset is removed before
*
* @param loader File object to load data from
*/
void load(CFile* loader);
/** save features to file
*
* not possible with subset
*
* @param writer File object to write data to
*/
void save(CFile* writer);
/** load features from file
*
* any subset is removed before
*
* @param fname filename to load from
* @param do_sort_features if true features will be sorted to ensure they
* are in ascending order
* @return label object with corresponding labels
*/
CLabels* load_svmlight_file(char* fname, bool do_sort_features=true);
/** ensure that features occur in ascending order, only call when no
* preprocessors are attached
*
* not possiblwe with subset
* */
void sort_features();
/** write features to file using svm light format
*
* not possible with subset
*
* @param fname filename to write to
* @param label Label object (number of labels must correspond to number of features)
* @return true if successful
*/
bool write_svmlight_file(char* fname, CLabels* label);
/** obtain the dimensionality of the feature space
*
* (not mix this up with the dimensionality of the input space, usually
* obtained via get_num_features())
*
* @return dimensionality
*/
virtual int32_t get_dim_feature_space() const;
/** compute dot product between vector1 and vector2,
* appointed by their indices
*
* possible with subset of this instance and of DotFeatures
*
* @param vec_idx1 index of first vector
* @param df DotFeatures (of same kind) to compute dot product with
* @param vec_idx2 index of second vector
*/
virtual float64_t dot(int32_t vec_idx1, CDotFeatures* df, int32_t vec_idx2);
/** compute dot product between vector1 and a dense vector
*
* possible with subset
*
* @param vec_idx1 index of first vector
* @param vec2 pointer to real valued vector
* @param vec2_len length of real valued vector
*/
virtual float64_t dense_dot(int32_t vec_idx1, const float64_t* vec2, int32_t vec2_len);
#ifndef DOXYGEN_SHOULD_SKIP_THIS
/** iterator for sparse features */
struct sparse_feature_iterator
{
/** feature vector */
SGSparseVector<ST> sv;
/** index */
int32_t index;
/** print details of iterator (for debugging purposes)*/
void print_info()
{
SG_SPRINT("sv=%p, vidx=%d, num_feat_entries=%d, index=%d\n",
sv.features, sv.vec_index, sv.num_feat_entries, index);
}
};
#endif
/** iterate over the non-zero features
*
* call get_feature_iterator first, followed by get_next_feature and
* free_feature_iterator to cleanup
*
* possible with subset
*
* @param vector_index the index of the vector over whose components to
* iterate over
* @return feature iterator (to be passed to get_next_feature)
*/
virtual void* get_feature_iterator(int32_t vector_index);
/** iterate over the non-zero features
*
* call this function with the iterator returned by get_first_feature
* and call free_feature_iterator to cleanup
*
* @param index is returned by reference (-1 when not available)
* @param value is returned by reference
* @param iterator as returned by get_first_feature
* @return true if a new non-zero feature got returned
*/
virtual bool get_next_feature(int32_t& index, float64_t& value, void* iterator);
/** clean up iterator
* call this function with the iterator returned by get_first_feature
*
* @param iterator as returned by get_first_feature
*/
virtual void free_feature_iterator(void* iterator);
/** Creates a new CFeatures instance containing copies of the elements
* which are specified by the provided indices.
*
* @param indices indices of feature elements to copy
* @return new CFeatures instance with copies of feature data
*/
virtual CFeatures* copy_subset(SGVector<index_t> indices);
/** @return object name */
inline virtual const char* get_name() const { return "SparseFeatures"; }
protected:
/** compute feature vector for sample num
* if target is set the vector is written to target
* len is returned by reference
*
* NOT IMPLEMENTED!
*
* @param num num
* @param len len
* @param target target
*/
virtual SGSparseVectorEntry<ST>* compute_sparse_feature_vector(int32_t num,
int32_t& len, SGSparseVectorEntry<ST>* target=NULL);
private:
void init();
protected:
/// total number of vectors
int32_t num_vectors;
/// total number of features
int32_t num_features;
/// array of sparse vectors of size num_vectors
SGSparseVector<ST>* sparse_feature_matrix;
/** feature cache */
CCache< SGSparseVectorEntry<ST> >* feature_cache;
};
}
#endif /* _SPARSEFEATURES__H__ */
|