/usr/include/shogun/kernel/CustomKernel.h is in libshogun-dev 1.1.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 1999-2009 Soeren Sonnenburg
* Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
*/
#ifndef _CUSTOMKERNEL_H___
#define _CUSTOMKERNEL_H___
#include <shogun/mathematics/Math.h>
#include <shogun/lib/common.h>
#include <shogun/kernel/Kernel.h>
#include <shogun/features/Features.h>
namespace shogun
{
/** @brief The Custom Kernel allows for custom user provided kernel matrices.
*
* For squared training matrices it allows to store only the upper triangle of
* the kernel to save memory: Full symmetric kernel matrices can be stored as
* is or can be internally converted into (or directly given in) upper triangle
* representation. Also note that values are stored as 32bit floats.
*
*/
class CCustomKernel: public CKernel
{
void init();
public:
/** default constructor */
CCustomKernel();
/** constructor
*
* compute custom kernel from given kernel matrix
* @param k kernel matrix
*/
CCustomKernel(CKernel* k);
/** constructor
*
* sets full kernel matrix from full kernel matrix
* (from double precision floats)
*
* @param km kernel matrix
*/
CCustomKernel(SGMatrix<float64_t> km);
/**
*
*/
virtual ~CCustomKernel();
/** initialize kernel with dummy features
*
* Kernels always need feature objects assigned. As the custom kernel
* does not really require this it creates some magic dummy features
* that only know about the number of vectors
*
* @param rows features of left-hand side
* @param cols features of right-hand side
* @return if initializing was successful
*/
virtual bool dummy_init(int32_t rows, int32_t cols);
/** initialize kernel
*
* @param l features of left-hand side
* @param r features of right-hand side
* @return if initializing was successful
*/
virtual bool init(CFeatures* l, CFeatures* r);
/** clean up kernel */
virtual void cleanup();
/** return what type of kernel we are
*
* @return kernel type CUSTOM
*/
inline virtual EKernelType get_kernel_type() { return K_CUSTOM; }
/** return feature type the kernel can deal with
*
* @return feature type ANY
*/
inline virtual EFeatureType get_feature_type() { return F_ANY; }
/** return feature class the kernel can deal with
*
* @return feature class ANY
*/
inline virtual EFeatureClass get_feature_class() { return C_ANY; }
/** return the kernel's name
*
* @return name Custom
*/
virtual const char* get_name() const { return "CustomKernel"; }
/** set kernel matrix (only elements from upper triangle)
* from elements of upper triangle (concat'd), including the
* main diagonal
*
* small variant for floats64's, triangle needs to have less than 2**32 elements
*
* @param tri_kernel_matrix tri kernel matrix
* @return if setting was successful
*/
bool set_triangle_kernel_matrix_from_triangle(
SGVector<float64_t> tri_kernel_matrix)
{
return set_triangle_kernel_matrix_from_triangle_generic(tri_kernel_matrix);
}
/** set kernel matrix (only elements from upper triangle)
* from elements of upper triangle (concat'd), including the
* main diagonal
*
* big variant, allowing the triangle to have more than 2**31-1 elements
*
* @param tri_kernel_matrix tri kernel matrix
* @return if setting was successful
*/
template <class T>
bool set_triangle_kernel_matrix_from_triangle_generic(
SGVector<T> tri_kernel_matrix)
{
ASSERT(tri_kernel_matrix.vector);
int64_t len = tri_kernel_matrix.vlen;
int64_t cols = (int64_t) floor(-0.5 + CMath::sqrt(0.25+2*len));
if (cols*(cols+1)/2 != len)
{
SG_ERROR("km should be a vector containing a lower triangle matrix, with len=cols*(cols+1)/2 elements\n");
return false;
}
cleanup_custom();
SG_DEBUG( "using custom kernel of size %dx%d\n", cols,cols);
kmatrix.matrix = SG_MALLOC(float32_t, len);
kmatrix.num_rows=cols;
kmatrix.num_cols=cols;
upper_diagonal=true;
for (int64_t i=0; i<len; i++)
kmatrix.matrix[i]=tri_kernel_matrix.vector[i];
dummy_init(cols,cols);
return true;
}
/** set kernel matrix (only elements from upper triangle)
* from squared matrix
*
* for float64's
*
* @return if setting was successful
*/
inline bool set_triangle_kernel_matrix_from_full(
SGMatrix<float64_t> full_kernel_matrix)
{
return set_triangle_kernel_matrix_from_full_generic(full_kernel_matrix);
}
/** set kernel matrix (only elements from upper triangle)
* from squared matrix
*
* @return if setting was successful
*/
template <class T>
bool set_triangle_kernel_matrix_from_full_generic(
SGMatrix<T> full_kernel_matrix)
{
int32_t rows = full_kernel_matrix.num_rows;
int32_t cols = full_kernel_matrix.num_cols;
ASSERT(rows==cols);
cleanup_custom();
SG_DEBUG( "using custom kernel of size %dx%d\n", cols,cols);
kmatrix.matrix = SG_MALLOC(float32_t, int64_t(rows)*cols);
kmatrix.num_rows = rows;
kmatrix.num_cols = cols;
upper_diagonal = false;
for (int64_t row=0; row<rows; row++)
{
for (int64_t col=row; col<cols; col++)
{
int64_t idx=row * cols - row*(row+1)/2 + col;
kmatrix.matrix[idx] = full_kernel_matrix.matrix[col*rows+row];
}
}
dummy_init(rows, cols);
return true;
}
/** set full kernel matrix from full kernel matrix
*
* for float32
*
* @return if setting was successful
*/
bool set_full_kernel_matrix_from_full(
SGMatrix<float32_t> full_kernel_matrix)
{
cleanup_custom();
kmatrix.matrix = full_kernel_matrix.matrix;
kmatrix.num_rows=full_kernel_matrix.num_rows;
kmatrix.num_cols=full_kernel_matrix.num_cols;
dummy_init(kmatrix.num_rows, kmatrix.num_cols);
return true;
}
/** set full kernel matrix from full kernel matrix
*
* for float64
*
* @return if setting was successful
*/
bool set_full_kernel_matrix_from_full(
SGMatrix<float64_t> full_kernel_matrix)
{
cleanup_custom();
int32_t rows=full_kernel_matrix.num_rows;
int32_t cols=full_kernel_matrix.num_cols;
SG_DEBUG( "using custom kernel of size %dx%d\n", rows,cols);
kmatrix.matrix = SG_MALLOC(float32_t, int64_t(rows)*cols);
kmatrix.num_rows = rows;
kmatrix.num_cols = cols;
upper_diagonal = false;
for (int32_t row=0; row<rows; row++)
{
for (int32_t col=0; col<cols; col++)
kmatrix.matrix[int64_t(row) * cols + col] =
full_kernel_matrix.matrix[int64_t(col)*rows+row];
}
dummy_init(rows, cols);
full_kernel_matrix.free_matrix();
return true;
}
/** get number of vectors of lhs features
*
* @return number of vectors of left-hand side
*/
virtual inline int32_t get_num_vec_lhs()
{
return kmatrix.num_rows;
}
/** get number of vectors of rhs features
*
* @return number of vectors of right-hand side
*/
virtual inline int32_t get_num_vec_rhs()
{
return kmatrix.num_cols;
}
/** test whether features have been assigned to lhs and rhs
*
* @return true if features are assigned
*/
virtual inline bool has_features()
{
return (kmatrix.num_rows>0) && (kmatrix.num_cols>0);
}
protected:
/** compute kernel function
*
* @param row row
* @param col col
* @return computed kernel function
*/
inline virtual float64_t compute(int32_t row, int32_t col)
{
ASSERT(kmatrix.matrix);
if (upper_diagonal)
{
if (row <= col)
{
int64_t r=row;
return kmatrix.matrix[r*kmatrix.num_rows - r*(r+1)/2 + col];
}
else
{
int64_t c=col;
return kmatrix.matrix[c*kmatrix.num_cols - c*(c+1)/2 + row];
}
}
else
{
int64_t r=row;
return kmatrix.matrix[r*kmatrix.num_cols+col];
}
}
private:
/** only cleanup stuff specific to Custom kernel */
void cleanup_custom();
protected:
/** kernel matrix */
SGMatrix<float32_t> kmatrix;
/** upper diagonal */
bool upper_diagonal;
};
}
#endif /* _CUSTOMKERNEL_H__ */
|