This file is indexed.

/usr/include/shogun/kernel/MultitaskKernelTreeNormalizer.h is in libshogun-dev 1.1.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2010 Christian Widmer
 * Copyright (C) 2010 Max-Planck-Society
 */

#ifndef _MULTITASKKERNELTREENORMALIZER_H___
#define _MULTITASKKERNELTREENORMALIZER_H___

#include <shogun/kernel/KernelNormalizer.h>
#include <shogun/kernel/MultitaskKernelMklNormalizer.h>
#include <shogun/kernel/Kernel.h>
#include <algorithm>
#include <map>
#include <set>
#include <deque>

namespace shogun
{

/** @brief A CNode is an element of a CTaxonomy, which is used to describe hierarchical
 * 	structure between tasks.
 *
 */
class CNode: public CSGObject
{
public:
	/** default constructor
	 */
    CNode()
    {
        parent = NULL;
        beta = 1.0;
        node_id = 0;
    }

    /** get a list of all ancestors of this node
     *  @return set of CNodes
	 */
    std::set<CNode*> get_path_root()
    {
        std::set<CNode*> nodes_on_path = std::set<CNode*>();
        CNode *node = this;
        while (node != NULL) {
            nodes_on_path.insert(node);
            node = node->parent;
        }
        return nodes_on_path;
    }

    /** get a list of task ids at the leaves below the current node
	 *  @return list of task ids
	 */
    std::vector<int32_t> get_task_ids_below()
    {

        std::vector<int32_t> task_ids;
        std::deque<CNode*> grey_nodes;
        grey_nodes.push_back(this);

        while(grey_nodes.size() > 0)
        {

            CNode *current_node = grey_nodes.front();
            grey_nodes.pop_front();

            for(int32_t i = 0; i!=int32_t(current_node->children.size()); i++){
                grey_nodes.push_back(current_node->children[i]);
            }

            if(current_node->is_leaf()){
            	task_ids.push_back(current_node->getNode_id());
            }
        }

        return task_ids;
    }

    /** add child to current node
	 *  @param node child node
	 */
    void add_child(CNode *node)
    {
        node->parent = this;
        this->children.push_back(node);
    }

    /** @return object name */
    inline virtual const char *get_name() const
    {
        return "CNode";
    }

    /** @return boolean indicating, whether this node is a leaf */
    bool is_leaf()
	{
		return children.empty();

	}

    /** @return node id of current node */
    int32_t getNode_id() const
    {
        return node_id;
    }

    /** @param node_idx node id for current node */
    void setNode_id(int32_t node_idx)
    {
        this->node_id = node_idx;
    }

    /** parameter of node **/
	float64_t beta;

protected:

	/** parent node **/
	CNode* parent;

	/** list of child nodes **/
	std::vector<CNode*> children;

	/** identifier of node **/
	int32_t node_id;

};


/** @brief CTaxonomy is used to describe hierarchical
 * 	structure between tasks.
 *
 */
class CTaxonomy : public CSGObject
{

public:

	/** default constructor
	 */
	CTaxonomy() : CSGObject()
	{
		root = new CNode();
		nodes.push_back(root);

		name2id = std::map<std::string, int32_t>();
		name2id["root"] = 0;
	}

	/**
	 *  @param task_id task identifier
	 *  @return node with id task_id
	 */
	CNode* get_node(int32_t task_id) {
		return nodes[task_id];
	}

	/** set root weight
	 *  @param beta weight
	 */
	void set_root_beta(float64_t beta)
	{
		nodes[0]->beta = beta;
	}

	/** inserts additional node into taxonomy
	 *  @param parent_name name of parent
	 *  @param child_name name of child
	 *  @param beta weight of child
	 */
	CNode* add_node(std::string parent_name, std::string child_name, float64_t beta)
	{
		if (child_name=="")	SG_ERROR("child_name empty");
		if (parent_name=="") SG_ERROR("parent_name empty");


		CNode* child_node = new CNode();

		child_node->beta = beta;

		nodes.push_back(child_node);
		int32_t id = nodes.size()-1;

		name2id[child_name] = id;

		child_node->setNode_id(id);


		//create edge
		CNode* parent = nodes[name2id[parent_name]];

		parent->add_child(child_node);

		return child_node;
	}

	/** translates name to id
	 *  @param name name of task
	 *  @return id
	 */
	int32_t get_id(std::string name) {
		return name2id[name];
	}

	/** given two nodes, compute the intersection of their ancestors
	 *  @param node_lhs node of left hand side
	 *  @param node_rhs node of right hand side
	 *  @return intersection of the two sets of ancestors
	 */
	std::set<CNode*> intersect_root_path(CNode* node_lhs, CNode* node_rhs)
	{

		std::set<CNode*> root_path_lhs = node_lhs->get_path_root();
		std::set<CNode*> root_path_rhs = node_rhs->get_path_root();

		std::set<CNode*> intersection;

		std::set_intersection(root_path_lhs.begin(), root_path_lhs.end(),
							  root_path_rhs.begin(), root_path_rhs.end(),
							  std::inserter(intersection, intersection.end()));

		return intersection;

	}

	/**
	 * @param task_lhs task_id on left hand side
	 * @param task_rhs task_id on right hand side
	 * @return similarity between tasks
	 */
	float64_t compute_node_similarity(int32_t task_lhs, int32_t task_rhs)
	{

		CNode* node_lhs = get_node(task_lhs);
		CNode* node_rhs = get_node(task_rhs);

		// compute intersection of paths to root
		std::set<CNode*> intersection = intersect_root_path(node_lhs, node_rhs);

		// sum up weights
		float64_t gamma = 0;
		for (std::set<CNode*>::const_iterator p = intersection.begin(); p != intersection.end(); ++p) {

			gamma += (*p)->beta;
		}

		return gamma;

	}

	/** keep track of how many elements each task has
	 * @param task_vector_lhs vector of task ids for examples
	 */
	void update_task_histogram(std::vector<int32_t> task_vector_lhs) {

		//empty map
		task_histogram.clear();


		//fill map with zeros
		for (std::vector<int32_t>::const_iterator it=task_vector_lhs.begin(); it!=task_vector_lhs.end(); it++)
		{
			task_histogram[*it] = 0.0;
		}

		//fill map
		for (std::vector<int32_t>::const_iterator it=task_vector_lhs.begin(); it!=task_vector_lhs.end(); it++)
		{
			task_histogram[*it] += 1.0;
		}

		//compute fractions
		for (std::map<int32_t, float64_t>::const_iterator it=task_histogram.begin(); it!=task_histogram.end(); it++)
		{
			task_histogram[it->first] = task_histogram[it->first] / float64_t(task_vector_lhs.size());
		}

	}

	/** @return number of nodes */
	int32_t get_num_nodes()
	{
		return (int32_t)(nodes.size());
	}

	/** @return number of leaves */
	int32_t get_num_leaves()
	{
		int32_t num_leaves = 0;

		for (int32_t i=0; i!=get_num_nodes(); i++)
		{
			if (get_node(i)->is_leaf()==true)
			{
				num_leaves++;
			}
		}

		return num_leaves;
	}

	/** @return weight of node with identifier idx */
	float64_t get_node_weight(int32_t idx)
	{
		CNode* node = get_node(idx);
		return node->beta;
	}

	/**
	 *  @param idx node id
	 *  @param weight weight to set
	 */
	void set_node_weight(int32_t idx, float64_t weight)
	{
		CNode* node = get_node(idx);
		node->beta = weight;
	}

	/** @return object name */
	inline virtual const char* get_name() const
	{
		return "CTaxonomy";
	}

	/** @return mapping from name to id */
	std::map<std::string, int32_t> get_name2id() {
		return name2id;
	}

	/**
	 *  translate name to id
	 *  @param name node name
	 *  @return id
	 */
	int32_t get_id_by_name(std::string name)
	{
		return name2id[name];
	}


protected:

	/** root */
	CNode* root;
	/** name 2 id */
	std::map<std::string, int32_t> name2id;
	/** nodes */
	std::vector<CNode*> nodes;
	/** task histogram */
	std::map<int32_t, float64_t> task_histogram;

};




class CMultitaskKernelMklNormalizer;

/** @brief The MultitaskKernel allows Multitask Learning via a modified kernel function based on taxonomy.
 *
 */
class CMultitaskKernelTreeNormalizer: public CMultitaskKernelMklNormalizer
{



public:

	/** default constructor
	 */
	CMultitaskKernelTreeNormalizer() : CMultitaskKernelMklNormalizer()
	{
	}

	/** default constructor
	 *
	 * @param task_lhs task vector with containing task_id for each example for left hand side
	 * @param task_rhs task vector with containing task_id for each example for right hand side
	 * @param tax taxonomy
	 */
	CMultitaskKernelTreeNormalizer(std::vector<std::string> task_lhs,
								   std::vector<std::string> task_rhs,
								   CTaxonomy tax) : CMultitaskKernelMklNormalizer()
	{

		taxonomy = tax;
		set_task_vector_lhs(task_lhs);
		set_task_vector_rhs(task_rhs);

		num_nodes = taxonomy.get_num_nodes();

		dependency_matrix = std::vector<float64_t>(num_nodes * num_nodes);

		update_cache();
	}


	/** default destructor */
	virtual ~CMultitaskKernelTreeNormalizer()
	{
	}


	/** update cache */
	void update_cache()
	{


		for (int32_t i=0; i!=num_nodes; i++)
		{
			for (int32_t j=0; j!=num_nodes; j++)
			{

				float64_t similarity = taxonomy.compute_node_similarity(i, j);
				set_node_similarity(i,j,similarity);

			}

		}
	}



	/** normalize the kernel value
	 * @param value kernel value
	 * @param idx_lhs index of left hand side vector
	 * @param idx_rhs index of right hand side vector
	 */
	inline virtual float64_t normalize(float64_t value, int32_t idx_lhs, int32_t idx_rhs)
	{
		//lookup tasks
		int32_t task_idx_lhs = task_vector_lhs[idx_lhs];
		int32_t task_idx_rhs = task_vector_rhs[idx_rhs];

		//lookup similarity
		float64_t task_similarity = get_node_similarity(task_idx_lhs, task_idx_rhs);
		//float64_t task_similarity = taxonomy.compute_node_similarity(task_idx_lhs, task_idx_rhs);

		//take task similarity into account
		float64_t similarity = (value/scale) * task_similarity;


		return similarity;
	}

	/** normalize only the left hand side vector
	 * @param value value of a component of the left hand side feature vector
	 * @param idx_lhs index of left hand side vector
	 */
	inline virtual float64_t normalize_lhs(float64_t value, int32_t idx_lhs)
	{
		SG_ERROR("normalize_lhs not implemented");
		return 0;
	}

	/** normalize only the right hand side vector
	 * @param value value of a component of the right hand side feature vector
	 * @param idx_rhs index of right hand side vector
	 */
	inline virtual float64_t normalize_rhs(float64_t value, int32_t idx_rhs)
	{
		SG_ERROR("normalize_rhs not implemented");
		return 0;
	}


	/** @param vec task vector with containing task_id for each example */
	void set_task_vector_lhs(std::vector<std::string> vec)
	{

		task_vector_lhs.clear();

		for (int32_t i = 0; i != (int32_t)(vec.size()); ++i)
		{
			task_vector_lhs.push_back(taxonomy.get_id(vec[i]));
		}

		//update task histogram
		taxonomy.update_task_histogram(task_vector_lhs);

	}

	/** @param vec task vector with containing task_id for each example */
	void set_task_vector_rhs(std::vector<std::string> vec)
	{

		task_vector_rhs.clear();

		for (int32_t i = 0; i != (int32_t)(vec.size()); ++i)
		{
			task_vector_rhs.push_back(taxonomy.get_id(vec[i]));
		}

	}

	/** @param vec task vector with containing task_id for each example */
	void set_task_vector(std::vector<std::string> vec)
	{
		set_task_vector_lhs(vec);
		set_task_vector_rhs(vec);
	}

	/** @return number of parameters/weights */
	int32_t get_num_betas()
	{

		return taxonomy.get_num_nodes();

	}

	/**
	 * @param idx id of weight
	 * @return weight of node with given id */
	float64_t get_beta(int32_t idx)
	{

		return taxonomy.get_node_weight(idx);

	}

	/**
	 * @param idx id of weight
	 * @param weight weight of node with given id */
	void set_beta(int32_t idx, float64_t weight)
	{

		taxonomy.set_node_weight(idx, weight);

		update_cache();

	}


	/**
	 * @param node_lhs node_id on left hand side
	 * @param node_rhs node_id on right hand side
	 * @return similarity between nodes
	 */
	float64_t get_node_similarity(int32_t node_lhs, int32_t node_rhs)
	{

		ASSERT(node_lhs < num_nodes && node_lhs >= 0);
		ASSERT(node_rhs < num_nodes && node_rhs >= 0);

		return dependency_matrix[node_lhs * num_nodes + node_rhs];

	}

	/**
	 * @param node_lhs node_id on left hand side
	 * @param node_rhs node_id on right hand side
	 * @param similarity similarity between nodes
	 */
	void set_node_similarity(int32_t node_lhs, int32_t node_rhs,
			float64_t similarity)
	{

		ASSERT(node_lhs < num_nodes && node_lhs >= 0);
		ASSERT(node_rhs < num_nodes && node_rhs >= 0);

		dependency_matrix[node_lhs * num_nodes + node_rhs] = similarity;

	}

	/** @return object name */
	inline virtual const char* get_name() const
	{
		return "MultitaskKernelTreeNormalizer";
	}

	/** casts kernel normalizer to multitask kernel tree normalizer
	 * @param n kernel normalizer to cast
	 */
	CMultitaskKernelTreeNormalizer* KernelNormalizerToMultitaskKernelTreeNormalizer(CKernelNormalizer* n)
	{
		return dynamic_cast<CMultitaskKernelTreeNormalizer*>(n);
	}

protected:
	/** taxonomy **/
	CTaxonomy taxonomy;

	/** number of tasks **/
	int32_t num_nodes;

	/** task vector indicating to which task each example on the left hand side belongs **/
	std::vector<int32_t> task_vector_lhs;

	/** task vector indicating to which task each example on the right hand side belongs **/
	std::vector<int32_t> task_vector_rhs;

	/** MxM matrix encoding similarity between tasks **/
	std::vector<float64_t> dependency_matrix;
};
}
#endif