This file is indexed.

/usr/include/shogun/kernel/ZeroMeanCenterKernelNormalizer.h is in libshogun-dev 1.1.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2010 Gorden Jemwa
 * Copyright (C) 2010 University of Stellenbosch
 */

#ifndef _ZEROMEANCENTERKERNELNORMALIZER_H___
#define _ZEROMEANCENTERKERNELNORMALIZER_H___

#include <shogun/kernel/KernelNormalizer.h>

namespace shogun
{
/** @brief ZeroMeanCenterKernelNormalizer centers the kernel in feature space
 *
 * After centering, each feature must have zero mean.  The centered kernel
 * matrix can be expressed in terms of the non-centered version.
 *
 * Denoting the mapping from input space to feature space by \f$\phi:\mathcal{X}\rightarrow\mathcal{F}\f$, the centered square kernel matrix \f$K_c\f$ (with  dimensionality \f$ M \f$) 
 * 
 * can be expressed in terms of the original matrix \f$K\f$ as follows:
 *
 * \f{eqnarray*}
 * k({\bf x}_i,{\bf x}_j)_c & = & \left(\phi({\bf x}_i) - \frac{1}{m} \sum_{p=1}^M \phi({\bf x}_p)\right) \cdot \left(\phi({\bf x}_j) - \frac{1}{M} \sum_{q=1}^M \phi({\bf x}_q)\right)  \\ 
 *          & = & K_{ij} - \frac{1}{M} \sum_{p=1}^M K_{pj} - \frac{1}{M} \sum_{q=1}^M K_{iq} + \frac{1}{M^2} \sum_{p=1}^M \sum_{q=1}^M K_{pq} \\
 *          & = & (K - 1_M K - K 1_M + 1_M K 1_M)_{ij}
 * \f}
 *
 *
 * Additionally, let  \f$ K^{t} \f$  be the \f$ L \times M \f$ test matrix describing the similarity between a \f$ L \f$ test instances with \f$M\f$ training instances 
 * 
 * (defined by a \f$ M x M \f$ kernel matrix \f$ K\f$), the centered testing set kernel matrix is given by
 * \f[
 * K_{c}^t  =  (K - 1'_M K - K^{t} 1_M + 1'_M K 1_M)
 * \f]
 */
class CZeroMeanCenterKernelNormalizer : public CKernelNormalizer
{
	public:
		/** default constructor
		*/
		CZeroMeanCenterKernelNormalizer()
			: CKernelNormalizer(), ktrain_row_means(NULL), num_ktrain(0),
			ktest_row_means(NULL),	num_ktest(0)
		{
			m_parameters->add_vector(&ktrain_row_means, &num_ktrain,
					"num_ktrain", "Train row means.");
			m_parameters->add_vector(&ktest_row_means, &num_ktest,
					"num_ktest","Test row means.");
		}

		/** default destructor */
		virtual ~CZeroMeanCenterKernelNormalizer()
		{
			SG_FREE(ktrain_row_means);
			SG_FREE(ktest_row_means);    
		}

		/** initialization of the normalizer 
		 * @param k kernel */
		virtual bool init(CKernel* k)
		{
			ASSERT(k);
			int32_t num_lhs=k->get_num_vec_lhs();
			int32_t num_rhs=k->get_num_vec_rhs();
			ASSERT(num_lhs>0);
			ASSERT(num_rhs>0);

			CFeatures* old_lhs=k->lhs;
			CFeatures* old_rhs=k->rhs;

			/* compute mean for each row of the train matrix*/
			k->lhs=old_lhs;
			k->rhs=old_lhs;

			bool r1=alloc_and_compute_row_means(k, ktrain_row_means, num_lhs,num_lhs);

			/* compute mean for each row of the test matrix */
			k->lhs=old_lhs;
			k->rhs=old_rhs;

			bool r2=alloc_and_compute_row_means(k, ktest_row_means, num_lhs,num_rhs);

			/* compute train kernel matrix mean */
			ktrain_mean=0;
			for (int32_t i=0;i<num_lhs;i++)
				ktrain_mean += (ktrain_row_means[i]/num_lhs);

			k->lhs=old_lhs;
			k->rhs=old_rhs;

			return r1 && r2;
		}

		/** normalize the kernel value
		 * @param value kernel value
		 * @param idx_lhs index of left hand side vector
		 * @param idx_rhs index of right hand side vector
		 */
		inline virtual float64_t normalize(
				float64_t value, int32_t idx_lhs, int32_t idx_rhs)
		{
			value += (-ktrain_row_means[idx_lhs] - ktest_row_means[idx_rhs] + ktrain_mean);
			return value;
		}

		/** normalize only the left hand side vector
		 * @param value value of a component of the left hand side feature vector
		 * @param idx_lhs index of left hand side vector
		 */
		inline virtual float64_t normalize_lhs(float64_t value, int32_t idx_lhs)
		{
			SG_ERROR("normalize_lhs not implemented");
			return 0;
		}

		/** normalize only the right hand side vector
		 * @param value value of a component of the right hand side feature vector
		 * @param idx_rhs index of right hand side vector
		 */
		inline virtual float64_t normalize_rhs(float64_t value, int32_t idx_rhs)
		{
			SG_ERROR("normalize_rhs not implemented");
			return 0;
		}

		/**
		 * alloc and compute the vector containing the row margins of all rows
		 * for a kernel matrix.
		 */
		bool alloc_and_compute_row_means(CKernel* k, float64_t* &v, int32_t num_lhs, int32_t num_rhs)
		{
			SG_FREE(v);
			v=SG_MALLOC(float64_t, num_rhs);

			for (int32_t i=0; i<num_rhs; i++)
			{
				v[i]=0;
				for (int32_t j=0; j<num_lhs; j++)
					v[i] += ( k->compute(j,i)/num_lhs );
			}
			return (v!=NULL);
		}

		/** @return object name */
		inline virtual const char* get_name() const { return "ZeroMeanCenterKernelNormalizer"; }

	protected:
		/** train row means */
		float64_t* ktrain_row_means;

		/** num k train */
		int32_t num_ktrain;

		/** test row means */
		float64_t* ktest_row_means;

		/** num k test */
		int32_t num_ktest;

		/** train mean */
		float64_t ktrain_mean;
};
}
#endif