This file is indexed.

/usr/include/shogun/machine/Machine.h is in libshogun-dev 1.1.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2009 Soeren Sonnenburg
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _MACHINE_H__
#define _MACHINE_H__

#include <shogun/lib/common.h>
#include <shogun/base/SGObject.h>
#include <shogun/features/Labels.h>
#include <shogun/features/Features.h>

namespace shogun
{

class CFeatures;
class CLabels;
class CMath;

/** classifier type */
enum EClassifierType
{
	CT_NONE = 0,
	CT_LIGHT = 10,
	CT_LIGHTONECLASS = 11,
	CT_LIBSVM = 20,
	CT_LIBSVMONECLASS=30,
	CT_LIBSVMMULTICLASS=40,
	CT_MPD = 50,
	CT_GPBT = 60,
	CT_CPLEXSVM = 70,
	CT_PERCEPTRON = 80,
	CT_KERNELPERCEPTRON = 90,
	CT_LDA = 100,
	CT_LPM = 110,
	CT_LPBOOST = 120,
	CT_KNN = 130,
	CT_SVMLIN=140,
	CT_KRR = 150,
	CT_GNPPSVM = 160,
	CT_GMNPSVM = 170,
	CT_SUBGRADIENTSVM = 180,
	CT_SUBGRADIENTLPM = 190,
	CT_SVMPERF = 200,
	CT_LIBSVR = 210,
	CT_SVRLIGHT = 220,
	CT_LIBLINEAR = 230,
	CT_KMEANS = 240,
	CT_HIERARCHICAL = 250,
	CT_SVMOCAS = 260,
	CT_WDSVMOCAS = 270,
	CT_SVMSGD = 280,
	CT_MKLMULTICLASS = 290,
	CT_MKLCLASSIFICATION = 300,
	CT_MKLONECLASS = 310,
	CT_MKLREGRESSION = 320,
	CT_SCATTERSVM = 330,
	CT_DASVM = 340,
	CT_LARANK = 350,
	CT_DASVMLINEAR = 360,
	CT_GAUSSIANNAIVEBAYES = 370,
	CT_AVERAGEDPERCEPTRON = 380,
	CT_SGDQN = 390,

};

/** solver type */
enum ESolverType
{
	ST_AUTO=0,
	ST_CPLEX=1,
	ST_GLPK=2,
	ST_NEWTON=3,
	ST_DIRECT=4,
	ST_ELASTICNET=5,
	ST_BLOCK_NORM=6
};

/** @brief A generic learning machine interface.
 *
 * A machine takes as input CFeatures and (optionally) CLabels.
 * Later subclasses may specialize the machine to e.g. require labels
 * and a kernel or labels and (real-valued) features.
 *
 * A machine needs to override the train() function for training,
 * the functions apply(idx) (optionally apply() to predict on the
 * whole set of examples) and the load and save routines.
 *
 */
class CMachine : public CSGObject
{
	public:
		/** constructor */
		CMachine();

		/** destructor */
		virtual ~CMachine();

		/** train machine
		 *
		 * @param data training data (parameter can be avoided if distance or
		 * kernel-based classifiers are used and distance/kernels are
		 * initialized with train data).
		 * If flag is set, model features will be stored after training.
		 *
		 * @return whether training was successful
		 */
		virtual bool train(CFeatures* data=NULL);

		/** apply machine to the currently set features
		 *
		 * @return output 'labels'
		 */
		virtual CLabels* apply()=0;

		/** apply machine to data
		 *
		 * @param data (test)data to be classified
		 * @return classified labels
		 */
		virtual CLabels* apply(CFeatures* data)=0;

		/** apply machine to one example
		 *
		 * abstract base method
		 *
		 * @param num which example to apply machine to
		 * @return infinite float value
		 */
		virtual float64_t apply(int32_t num);

		/** load Machine from file
		 *
		 * abstract base method
		 *
		 * @param srcfile file to load from
		 * @return failure
		 */
		virtual bool load(FILE* srcfile);

		/** save Machine to file
		 *
		 * abstract base method
		 *
		 * @param dstfile file to save to
		 * @return failure
		 */
		virtual bool save(FILE* dstfile); 

		/** set labels
		 *
		 * @param lab labels
		 */
		virtual void set_labels(CLabels* lab);

		/** get labels
		 *
		 * @return labels
		 */
		virtual CLabels* get_labels();

		/** get one specific label
		 *
		 * @param i index of label to get
		 * @return value of label at index i
		 */
		virtual float64_t get_label(int32_t i);

		/** set maximum training time
		 *
		 * @param t maximimum training time
		 */
		void set_max_train_time(float64_t t);

		/** get maximum training time
		 *
		 * @return maximum training time
		 */
		float64_t get_max_train_time();

		/** get classifier type
		 *
		 * @return classifier type NONE
		 */
		virtual EClassifierType get_classifier_type();

		/** set solver type
		 *
		 * @param st solver type
		 */
		void set_solver_type(ESolverType st);

		/** get solver type
		 *
		 * @return solver
		 */
		ESolverType get_solver_type();

		/** Setter for store-model-features-after-training flag
		 *
		 * @param store_model whether model should be stored after
		 * training
		 */
		virtual void set_store_model_features(bool store_model);

	protected:
		/** train machine
		 *
		 * @param data training data (parameter can be avoided if distance or
		 * kernel-based classifiers are used and distance/kernels are
		 * initialized with train data)
		 *
		 * NOT IMPLEMENTED!
		 *
		 * @return whether training was successful
		 */
		virtual bool train_machine(CFeatures* data=NULL)
		{
			SG_ERROR("train_machine is not yet implemented for %s!\n",
					get_name());
			return false;
		}

		/** Stores feature data of underlying model.
		 * After this method has been called, it is possible to change
		 * the machine's feature data and call apply(), which is then performed
		 * on the training feature data that is part of the machine's model.
		 *
		 * Base method, has to be implemented in order to allow cross-validation
		 * and model selection.
		 *
		 * NOT IMPLEMENTED! Has to be done in subclasses
		 */
		virtual void store_model_features()
		{
			SG_ERROR("Model storage and therefore Cross-Validation and "
					"Model-Selection is not supported for %s\n", get_name());
		}

	protected:
		/** maximum training time */
		float64_t max_train_time;

		/** labels */
		CLabels* labels;

		/** solver type */
		ESolverType solver_type;

		/** whether model features should be stored after training */
		bool m_store_model_features;
};
}
#endif // _MACHINE_H__