/usr/include/sofa/component/linearsolver/BTDLinearSolver.h is in libsofa1-dev 1.0~beta4-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 | /******************************************************************************
* SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4 *
* (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS *
* *
* This library is free software; you can redistribute it and/or modify it *
* under the terms of the GNU Lesser General Public License as published by *
* the Free Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this library; if not, write to the Free Software Foundation, *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
*******************************************************************************
* SOFA :: Modules *
* *
* Authors: The SOFA Team and external contributors (see Authors.txt) *
* *
* Contact information: contact@sofa-framework.org *
******************************************************************************/
#ifndef SOFA_COMPONENT_LINEARSOLVER_BTDLINEARSOLVER_H
#define SOFA_COMPONENT_LINEARSOLVER_BTDLINEARSOLVER_H
#include <sofa/core/componentmodel/behavior/LinearSolver.h>
#include <sofa/component/linearsolver/MatrixLinearSolver.h>
#include <sofa/component/linearsolver/SparseMatrix.h>
#include <sofa/component/linearsolver/FullMatrix.h>
#include <math.h>
namespace sofa
{
namespace component
{
namespace linearsolver
{
/// Linear system solver using Thomas Algorithm for Block Tridiagonal matrices
///
/// References:
/// Conte, S.D., and deBoor, C. (1972). Elementary Numerical Analysis. McGraw-Hill, New York
/// http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
/// http://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_algorithm)
/// http://www4.ncsu.edu/eos/users/w/white/www/white/ma580/chap2.5.PDF
template<class Matrix, class Vector>
class BTDLinearSolver : public sofa::component::linearsolver::MatrixLinearSolver<Matrix,Vector>, public virtual sofa::core::objectmodel::BaseObject
{
public:
Data<bool> f_verbose;
Data<bool> problem;
Data<bool> subpartSolve;
Data<bool> verification;
Data<bool> test_perf;
typedef typename Matrix::SubMatrixType SubMatrix;
typedef std::list<int> ListIndex;
typedef std::pair<int,int> IndexPair;
typedef std::map<IndexPair, SubMatrix> MysparseM;
typedef typename std::map<IndexPair, SubMatrix>::iterator MysparseMit;
//helper::vector<SubMatrix> alpha;
helper::vector<SubMatrix> alpha_inv;
helper::vector<SubMatrix> lambda;
helper::vector<SubMatrix> B;
typename Matrix::InvMatrixType Minv; //inverse matrix
//////////////////////////// for subpartSolve
MysparseM H; // force transfer
MysparseMit H_it;
Vector _acc_result; //
Vector _rh_buf; // // buf the right hand term
//Vector _df_buf; //
Vector _acc_rh_current_block; // accumulation of rh through the browsing of the structure
Vector _acc_lh_current_block; // accumulation of lh through the browsing of the strucutre
int current_block, first_block;
std::vector<Vector> Vec_df; // buf the df on block that are not current_block...
////////////////////////////
helper::vector<int> nBlockComputedMinv;
Vector Y;
Data<int> f_blockSize;
BTDLinearSolver()
: f_verbose( initData(&f_verbose,false,"verbose","Dump system state at each iteration") )
, problem(initData(&problem, false,"showProblem", "Suppress the computation of all elements of the inverse") )
, subpartSolve(initData(&subpartSolve, false,"subpartSolve", "Allows for the computation of a subpart of the system") )
, verification(initData(&verification, false,"verification", "verification of the subpartSolve"))
, test_perf(initData(&test_perf, false,"test_perf", "verification of performance"))
, f_blockSize( initData(&f_blockSize,6,"blockSize","dimension of the blocks in the matrix") )
{
}
/// Factorize M
///
/// [ A0 C0 0 0 ] [ a0 0 0 0 ] [ I l0 0 0 ]
/// M = [ B1 A1 C1 0 ] = L U = [ B1 a1 0 0 ] [ 0 I l1 0 ]
/// [ 0 B2 A2 C2 ] [ 0 B2 a2 0 ] [ 0 0 I l2 ]
/// [ 0 0 B3 A3 ] [ 0 0 B3 a3 ] [ 0 0 0 I ]
/// [ a0 a0l0 0 0 ]
/// M = [ B1 B1l0+a1 a1l1 0 ]
/// [ 0 B2 B2l1+a2 a2l2 ]
/// [ 0 0 B3 B3l2+a3 ]
/// L X = [ a0X0 B1X0+a1X1 B2X1+a2X2 B3X2+a3X3 ]
/// [ inva0 0 0 0 ]
/// Linv = [ -inva1B1inva0 inva1 0 0 ]
/// [ inva2B2inva1B1inva0 -inva2B2inva1 inva2 0 ]
/// [ -inva3B3inva2B2inva1B1inva0 inva3B3inva2B2inva1 -inva3B3inva2 inva3 ]
/// U X = [ X0+l0X1 X1+l1X2 X2+l2X3 X3 ]
/// Uinv = [ I -l0 l0l1 -l0l1l2 ]
/// [ 0 I -l1 l1l2 ]
/// [ 0 0 I -l2 ]
/// [ 0 0 0 I ]
///
/// [ (I+l0(I+l1(I+l2inva3B3)inva2B2)inva1B1)inva0 -l0(I+l1(I+l2inva3B3)inva2B2)inva1 l0l1(inva2+l2inva3B3inva2) -l0l1l2inva3 ]
/// Minv = Uinv Linv = [ -((I+l1(I+l2inva3B3)inva2B2)inva1B1)inva0 (I+l1(I+l2inva3B3)inva2B2)inva1 -l1(inva2+l2inva3B3inva2) l1l2inva3 ]
/// [ (((I+l2inva3B3)inva2B2)inva1B1)inva0 -((I+l2inva3B3)inva2B2)inva1 inva2+l2inva3B3inva2 -l2inva3 ]
/// [ -inva3B3inva2B2inva1B1inva0 inva3B3inva2B2inva1 -inva3B3inva2 inva3 ]
///
/// [ inva0-l0(Minv10) (-l0)(Minv11) (-l0)(Minv12) (-l0)(Minv13) ]
/// Minv = Uinv Linv = [ (Minv11)(-B1inva0) inva1-l1(Minv21) (-l1)(Minv22) (-l1)(Minv23) ]
/// [ (Minv21)(-B1inva0) (Minv22)(-B2inva1) inva2-l2(Minv32) (-l2)(Minv33) ]
/// [ (Minv31)(-B1inva0) (Minv32)(-B2inva1) (Minv33)(-B3inva2) inva3 ]
///
/// if M is symmetric (Ai = Ait and Bi+1 = C1t) :
/// li = invai*Ci = (invai)t*(Bi+1)t = (B(i+1)invai)t
///
/// [ inva0-l0(Minv11)(-l0t) Minv10t Minv20t Minv30t ]
/// Minv = Uinv Linv = [ (Minv11)(-l0t) inva1-l1(Minv22)(-l1t) Minv21t Minv31t ]
/// [ (Minv21)(-l0t) (Minv22)(-l1t) inva2-l2(Minv33)(-l2t) Minv32t ]
/// [ (Minv31)(-l0t) (Minv32)(-l1t) (Minv33)(-l2t) inva3 ]
///
//template<class T>
void my_identity(SubMatrix& Id, const int size_id)
{
Id.resize(size_id,size_id);
for (int i=0; i<size_id; i++)
Id.set(i,i,1.0);
}
template<class T>
void invert(SubMatrix& Inv, const T& m)
{
SubMatrix M;
M = m;
// Check for diagonal matrices
unsigned int i0 = 0;
const unsigned int n = M.Nrows();
Inv.resize(n,n);
while (i0 < n)
{
unsigned int j0 = i0+1;
double eps = M.element(i0,i0)*1.0e-10;
while (j0 < n)
if (fabs(M.element(i0,j0)) > eps) break;
else ++j0;
if (j0 == n)
{ // i0 row is the identity
Inv.set(i0,i0,1.0/M.element(i0,i0));
++i0;
}
else break;
}
if (i0 == 0)
Inv = M.i();
else if (i0 < n)
Inv.sub(i0,i0,n-i0,n-i0) = M.sub(i0,i0,n-i0,n-i0).i();
//else return true;
//return false;
}
void invert(Matrix& M)
{
const bool verbose = f_verbose.getValue() || f_printLog.getValue();
if( verbose )
{
serr<<"BTDLinearSolver, invert Matrix = "<< M <<sendl;
}
const int bsize = f_blockSize.getValue();
const int nb = M.rowSize() / bsize;
if (nb == 0) return;
//alpha.resize(nb);
alpha_inv.resize(nb);
lambda.resize(nb-1);
B.resize(nb);
/////////////////////////// subpartSolve init ////////////
if(subpartSolve.getValue() ) {
H.clear();
_acc_result=0;
_acc_result.resize(nb*bsize);
_rh_buf = 0;
_rh_buf.resize(nb*bsize);
//_df_buf = 0;
//_df_buf.resize(nb*bsize);
_acc_rh_current_block=0;
_acc_rh_current_block.resize(bsize);
_acc_lh_current_block=0;
_acc_lh_current_block.resize(bsize);
current_block = nb-1;
Vec_df.resize(nb);
for (int i=0; i<nb; i++)
{
Vec_df[i]=0;
Vec_df[i].resize(bsize);
}
}
SubMatrix A, C;
//int ndiag = 0;
M.getSubMatrix(0*bsize,0*bsize,bsize,bsize,A);
//if (verbose) sout << "A[0] = " << A << sendl;
M.getSubMatrix(0*bsize,1*bsize,bsize,bsize,C);
//if (verbose) sout << "C[0] = " << C << sendl;
//alpha[0] = A;
invert(alpha_inv[0],A);
if (verbose) sout << "alpha_inv[0] = " << alpha_inv[0] << sendl;
lambda[0] = alpha_inv[0]*C;
if (verbose) sout << "lambda[0] = " << lambda[0] << sendl;
//if (verbose) sout << "C[0] = alpha[0]*lambda[0] = " << alpha[0]*lambda[0] << sendl;
for (int i=1;i<nb;++i)
{
M.getSubMatrix((i )*bsize,(i )*bsize,bsize,bsize,A);
//if (verbose) sout << "A["<<i<<"] = " << A << sendl;
M.getSubMatrix((i )*bsize,(i-1)*bsize,bsize,bsize,B[i]);
//if (verbose) sout << "B["<<i<<"] = " << B[i] << sendl;
//alpha[i] = (A - B[i]*lambda[i-1]);
invert(alpha_inv[i], (A - B[i]*lambda[i-1]));
//if(subpartSolve.getValue() ) {
// helper::vector<SubMatrix> nHn_1; // bizarre: pb compilation avec SubMatrix nHn_1 = B[i] *alpha_inv[i];
// nHn_1.resize(1);
// nHn_1[0] = B[i] *alpha_inv[i-1];
// H.insert(make_pair(IndexPair(i,i-1),nHn_1[0])); //IndexPair(i+1,i) ??
// serr<<" Add pair ("<<i<<","<<i-1<<")"<<sendl;
//}
if (verbose) sout << "alpha_inv["<<i<<"] = " << alpha_inv[i] << sendl;
//if (verbose) sout << "A["<<i<<"] = B["<<i<<"]*lambda["<<i-1<<"]+alpha["<<i<<"] = " << B[i]*lambda[i-1]+alpha[i] << sendl;
if (i<nb-1)
{
M.getSubMatrix((i )*bsize,(i+1)*bsize,bsize,bsize,C);
//if (verbose) sout << "C["<<i<<"] = " << C << sendl;
lambda[i] = alpha_inv[i]*C;
if (verbose) sout << "lambda["<<i<<"] = " << lambda[i] << sendl;
//if (verbose) sout << "C["<<i<<"] = alpha["<<i<<"]*lambda["<<i<<"] = " << alpha[i]*lambda[i] << sendl;
}
}
nBlockComputedMinv.resize(nb);
for (int i=0;i<nb;++i)
nBlockComputedMinv[i] = 0;
// WARNING : cost of resize here : ???
Minv.resize(nb*bsize,nb*bsize);
Minv.setSubMatrix((nb-1)*bsize,(nb-1)*bsize,bsize,bsize,alpha_inv[nb-1]);
//std::cout<<"Minv.setSubMatrix call for block number"<<(nb-1)<<std::endl;
nBlockComputedMinv[nb-1] = 1;
if(subpartSolve.getValue() ) {
SubMatrix iHi; // bizarre: pb compilation avec SubMatrix nHn_1 = B[i] *alpha_inv[i];
my_identity(iHi, bsize);
H.insert( make_pair( IndexPair(nb-1, nb-1), iHi ) );
// on calcule les blocks diagonaux jusqu'au bout!!
// TODO : ajouter un compteur "first_block" qui évite de descendre les déplacements jusqu'au block 0 dans partial_solve si ce block n'a pas été appelé
computeMinvBlock(0, 0);
}
//sout << "BTDLinearSolver: "<<ndiag<<"/"<<nb<<"diagonal blocs."<<sendl;
}
///
/// [ inva0-l0(Minv10) Minv10t Minv20t Minv30t ]
/// Minv = Uinv Linv = [ (Minv11)(-l0t) inva1-l1(Minv21) Minv21t Minv31t ]
/// [ (Minv21)(-l0t) (Minv22)(-l1t) inva2-l2(Minv32) Minv32t ]
/// [ (Minv31)(-l0t) (Minv32)(-l1t) (Minv33)(-l2t) inva3 ]
///
void computeMinvBlock(int i, int j)
{
//serr<<"computeMinvBlock("<<i<<","<<j<<")"<<sendl;
if (i < j)
{ // lower diagonal
int t = i; i = j; j = t;
}
if (nBlockComputedMinv[i] > i-j) return; // the block was already computed
// the block is computed now :
// 1. all the diagonal block between N and i need to be computed
const int bsize = f_blockSize.getValue();
int i0 = i;
while (nBlockComputedMinv[i0]==0)
++i0;
// i0 is the first block of the diagonal that is computed
while (i0 > i)
{
//serr<<"i0 ="<<i0<<"nBlockComputedMinv[i0]="<<nBlockComputedMinv[i0]<<sendl;
if (nBlockComputedMinv[i0] == 1)
{
// compute bloc (i0,i0-1)
Minv.sub((i0 )*bsize,(i0-1)*bsize,bsize,bsize) = Minv.sub((i0 )*bsize,(i0 )*bsize,bsize,bsize)*(-lambda[i0-1].t());
++nBlockComputedMinv[i0];
if(subpartSolve.getValue() ) {
helper::vector<SubMatrix> iHi_1; // bizarre: pb compilation avec SubMatrix nHn_1 = B[i] *alpha_inv[i];
iHi_1.resize(1);
iHi_1[0] = - lambda[i0-1].t();
H.insert( make_pair( IndexPair(i0, i0-1), iHi_1[0] ) );
//serr<<" Add pair H("<<i0<<","<<i0-1<<")"<<sendl;
// compute bloc (i0,i0-1)
Minv.sub((i0-1)*bsize,(i0)*bsize,bsize,bsize) = -lambda[i0-1] * Minv.sub((i0 )*bsize,(i0 )*bsize,bsize,bsize);
}
}
// compute bloc (i0-1,i0-1)
Minv.sub((i0-1)*bsize,(i0-1)*bsize,bsize,bsize) = alpha_inv[i0-1] - lambda[i0-1]*Minv.sub((i0 )*bsize,(i0-1)*bsize,bsize,bsize);
if(subpartSolve.getValue() ) {
SubMatrix iHi; // bizarre: pb compilation avec SubMatrix nHn_1 = B[i] *alpha_inv[i];
my_identity(iHi, bsize);
H.insert( make_pair( IndexPair(i0-1, i0-1), iHi ) );
//serr<<" Add pair ("<<i0-1<<","<<i0-1<<")"<<sendl;
}
++nBlockComputedMinv[i0-1];
--i0;
}
//serr<<"here i0 ="<<i0<<" should be equal to i ="<<i<<sendl;
//2. all the block on the lines of block i between the diagonal and the block j are computed
int j0 = i-nBlockComputedMinv[i];
/////////////// ADD : Calcul pour faire du partial_solve //////////
SubMatrix iHj ;
if(subpartSolve.getValue() ) {
//if (i<current_block){
// current_block=i;
// first_block=i;
// }
H_it = H.find( IndexPair(i0,j0+1) );
//serr<<" find pair ("<<i<<","<<j0+1<<")"<<sendl;
if (H_it == H.end()) // ? si jamais l'élément qu'on cherche est justement H.end() ??
{
my_identity(iHj, bsize);
if (i0!=j0+1)
serr<<"WARNING !! element("<<i0<<","<<j0+1<<") not found : nBlockComputedMinv[i] = "<<nBlockComputedMinv[i]<<sendl;
}
else
{
//serr<<"element("<<i0<<","<<j0+1<<") found )!"<<sendl;
iHj = H_it->second;
}
}
/////////////////////////////////////////////////////////////////////
while (j0 >= j)
{
// compute bloc (i0,j0)
Minv.sub((i0 )*bsize,(j0 )*bsize,bsize,bsize) = Minv.sub((i0 )*bsize,(j0+1)*bsize,bsize,bsize)*(-lambda[j0].t());
if(subpartSolve.getValue() ) {
iHj = - iHj * lambda[j0].t();
H.insert(make_pair(IndexPair(i0,j0),iHj));
// compute bloc (i0,j0)
Minv.sub((j0 )*bsize,(i0 )*bsize,bsize,bsize) = -lambda[j0]*Minv.sub((j0+1)*bsize,(i0)*bsize,bsize,bsize);
//serr<<" Add pair ("<<i<<","<<j0<<")"<<sendl;
}
++nBlockComputedMinv[i0];
--j0;
}
}
double getMinvElement(int i, int j)
{
const int bsize = f_blockSize.getValue();
if (i < j)
{ // lower diagonal
int t = i; i = j; j = t;
}
computeMinvBlock(i/bsize, j/bsize);
return Minv.element(i,j);
}
/// Solve Mx=b
void solve (Matrix& /*M*/, Vector& x, Vector& b)
{
const bool verbose = f_verbose.getValue() || f_printLog.getValue();
if( verbose )
{
serr<<"BTDLinearSolver, b = "<< b <<sendl;
}
//invert(M);
const int bsize = f_blockSize.getValue();
const int nb = b.size() / bsize;
if (nb == 0) return;
//if (verbose) sout << "D["<<0<<"] = " << b.sub(0,bsize) << sendl;
x.sub(0,bsize) = alpha_inv[0] * b.sub(0,bsize);
//if (verbose) sout << "Y["<<0<<"] = " << x.sub(0,bsize) << sendl;
for (int i=1;i<nb;++i)
{
//if (verbose) sout << "D["<<i<<"] = " << b.sub(i*bsize,bsize) << sendl;
x.sub(i*bsize,bsize) = alpha_inv[i]*(b.sub(i*bsize,bsize) - B[i]*x.sub((i-1)*bsize,bsize));
//if (verbose) sout << "Y["<<i<<"] = " << x.sub(i*bsize,bsize) << sendl;
}
//x.sub((nb-1)*bsize,bsize) = Y.sub((nb-1)*bsize,bsize);
//if (verbose) sout << "x["<<nb-1<<"] = " << x.sub((nb-1)*bsize,bsize) << sendl;
for (int i=nb-2;i>=0;--i)
{
x.sub(i*bsize,bsize) /* = Y.sub(i*bsize,bsize)- */ -= lambda[i]*x.sub((i+1)*bsize,bsize);
//if (verbose) sout << "x["<<i<<"] = " << x.sub(i*bsize,bsize) << sendl;
}
// x is the solution of the system
if( verbose )
{
serr<<"BTDLinearSolver::solve, solution = "<<x<<sendl;
}
}
template<class RMatrix, class JMatrix>
bool addJMInvJt(RMatrix& result, JMatrix& J, double fact)
{
//const int Jrows = J.rowSize();
const unsigned int Jcols = J.colSize();
if (Jcols != Minv.rowSize())
{
serr << "BTDLinearSolver::addJMInvJt ERROR: incompatible J matrix size." << sendl;
return false;
}
#if 0
// WARNING !!!
//Getting all elements of Minv modifies the obtained Matrix "result"!!
// It seems that result is computed more accurately.
// There is a BUG to find here...
if (!problem.getValue()){
for (int mr=0; mr<Minv.rowSize(); mr++)
{
for (int mc=0; mc<Minv.colSize(); mc++)
{
/*double toto=*/getMinvElement(mr,mc);
}
}
}
////////////////////////////////////////////
#endif
if (f_verbose.getValue()){
// debug christian: print of the inverse matrix:
sout<< "C = ["<<sendl;
for (unsigned int mr=0; mr<Minv.rowSize(); mr++)
{
sout<<" "<<sendl;
for (unsigned int mc=0; mc<Minv.colSize(); mc++)
{
sout<<" "<< getMinvElement(mr,mc);
}
}
sout<< "];"<<sendl;
// debug christian: print of matrix J:
sout<< "J = ["<<sendl;
for (unsigned int jr=0; jr<J.rowSize(); jr++)
{
sout<<" "<<sendl;
for (unsigned int jc=0; jc<J.colSize(); jc++)
{
sout<<" "<< J.element(jr, jc) ;
}
}
sout<< "];"<<sendl;
}
const typename JMatrix::LineConstIterator jitend = J.end();
for (typename JMatrix::LineConstIterator jit1 = J.begin(); jit1 != jitend; ++jit1)
{
int row1 = jit1->first;
for (typename JMatrix::LineConstIterator jit2 = jit1; jit2 != jitend; ++jit2)
{
int row2 = jit2->first;
double acc = 0.0;
for (typename JMatrix::LElementConstIterator i1 = jit1->second.begin(), i1end = jit1->second.end(); i1 != i1end; ++i1)
{
int col1 = i1->first;
double val1 = i1->second;
for (typename JMatrix::LElementConstIterator i2 = jit2->second.begin(), i2end = jit2->second.end(); i2 != i2end; ++i2)
{
int col2 = i2->first;
double val2 = i2->second;
acc += val1 * getMinvElement(col1,col2) * val2;
}
}
//sout << "W("<<row1<<","<<row2<<") += "<<acc<<" * "<<fact<<sendl;
acc *= fact;
result.add(row1,row2,acc);
if (row1!=row2)
result.add(row2,row1,acc);
}
}
return true;
}
/// Multiply the inverse of the system matrix by the transpose of the given matrix, and multiply the result with the given matrix J
///
/// @param result the variable where the result will be added
/// @param J the matrix J to use
/// @return false if the solver does not support this operation, of it the system matrix is not invertible
bool addJMInvJt(defaulttype::BaseMatrix* result, defaulttype::BaseMatrix* J, double fact)
{
if (FullMatrix<double>* r = dynamic_cast<FullMatrix<double>*>(result))
{
if (SparseMatrix<double>* j = dynamic_cast<SparseMatrix<double>*>(J))
{
return addJMInvJt(*r,*j,fact);
}
else if (SparseMatrix<float>* j = dynamic_cast<SparseMatrix<float>*>(J))
{
return addJMInvJt(*r,*j,fact);
}
}
else if (FullMatrix<double>* r = dynamic_cast<FullMatrix<double>*>(result))
{
if (SparseMatrix<double>* j = dynamic_cast<SparseMatrix<double>*>(J))
{
return addJMInvJt(*r,*j,fact);
}
else if (SparseMatrix<float>* j = dynamic_cast<SparseMatrix<float>*>(J))
{
return addJMInvJt(*r,*j,fact);
}
}
else if (defaulttype::BaseMatrix* r = result)
{
if (SparseMatrix<double>* j = dynamic_cast<SparseMatrix<double>*>(J))
{
return addJMInvJt(*r,*j,fact);
}
else if (SparseMatrix<float>* j = dynamic_cast<SparseMatrix<float>*>(J))
{
return addJMInvJt(*r,*j,fact);
}
}
return false;
}
/////// NEW : partial solve :
// b is accumulated
// db is a sparse vector that is added to b
// partial_x is a sparse vector (with sparse map given) that provide the result of M x = b+db
/// Solve Mx=b
// Iin donne un block en entrée (dans rh) => derniers blocks dont on a modifié la valeur: on verifie que cette valeur a réellement changé (TODO: éviter en introduisant un booléen)
// Iout donne les block en sortie (dans result)
// ils sont tous les deux tries en ordre croissant
void partial_solve(ListIndex& Iout, ListIndex& Iin , bool NewIn) ///*Matrix& M, Vector& result, Vector& rh, */
{
// debug: test
if (verification.getValue())
{
solve(*this->systemMatrix,*this->systemLHVector, *this->systemRHVector);
return;
}
const int bsize = f_blockSize.getValue();
std::list<int>::const_iterator block_it;
//SubMatrix iHj;
//debug
/*
if(Iin.size() > 0)
{
std::cout<<"partial_solve block (in : "<<*Iin.begin()<<") OUT : "<<*Iout.begin()<<"current_block (should be equal to in) = "<<current_block<<std::endl;
}
else
{
std::cout<<"partial_solve block (in is NULL) => OUT : "<<*Iout.begin()<<"current_block = "<<current_block<<std::endl;
}
*/
///////////////////////// step 1 .changement des forces en entrée /////////////////////////
// debug
//test_perf.getValue() ||
bool new_forces = false;
if(test_perf.getValue() || NewIn)
{
//on regarde si la force a changé sur les block en entrée
// si le block actuel == bock en entrée => on accumule ces forces dans _acc_rh_current_block
// si le block actuel > block en entrée => pb ne devrait pas arriver... pour des forces actives !
// si le block actuel < block en entrée => on accumule les déplacements entre le block en entrée et le block actuel + on stocke la force actuelle pour qu'elle soit prise en compte lors de la prochaine remontée
for(block_it=Iin.begin();block_it!=Iin.end();block_it++)
{
int block = *block_it;
//// computation of DF
Vector DF;
DF.resize(bsize);
DF += this->systemRHVector->sub(block*bsize,bsize) - _rh_buf.sub(block*bsize,bsize);
_rh_buf.sub(block*bsize,bsize) = this->systemRHVector->sub(block*bsize,bsize) ;
////
if (DF.norm() > 0.0)
{
// debug //
new_forces = true;
if (current_block< block)
{
Vector DU;
DU.resize(bsize);
DU = Minv.sub(block*bsize,block*bsize,bsize,bsize) * DF;
//std::cout<<"Vec_df["<<block<<"]"<<Vec_df[block] ;
Vec_df[block] += DF;
//std::cout<<"Vec_df["<<block<<"] += DF "<<Vec_df[block]<<std::endl;
// Un += DUacc
//_acc_result.sub(block*bsize,bsize) += DU; // NON ! DU n'est ajouté que pour les blocks [current_block block[
// dans les calculs ultérieur.. pour les blocks [block N[ le calcul se dans le step 4 avec Vec_df
// jusqu'à ce que current_block== block dans ce cas, DF étant déjà dans this->systemRHVector->sub(block*bsize,bsize) il est définitivement pris en compte
//std::cout<<"la force sur le block en entrée vient du block "<<block<<" et le block courant est"<<current_block<<" ... on remonte le déplacement engendré "<<DU<<std::endl;
while( block > current_block)
{
block--;
// DUacc = Hn,n+1 * DUacc
DU = -lambda[block]*DU;
// Un += DUacc
_acc_result.sub(block*bsize,bsize) += DU;
}
}
else
{
if (current_block > block)
std::cerr<<"WARNING step1 forces en entrée: current_block= "<<current_block<<" should be inferior or equal to block= "<<block<<" problem with sort in Iin"<<std::endl;
else
{
//std::cout<<"la force sur le block en entrée vient du block "<<block<<" et le block courant est"<<current_block<<" ajout à _acc_rh_current_block"<<std::endl;
_acc_rh_current_block += DF; // current_block==block
}
/*
if(current_block == block)
my_identity(iHj, bsize);
else
{
H_it = H.find( IndexPair(current_block,block) );
iHj=H_it->second;
if (H_it == H.end())
{
my_identity(iHj, bsize);
serr<<"WARNING !! element("<<current_block<<","<<block<<") not found "<<sendl;
}
}
*/
}
}
}
}
if (NewIn && !new_forces)
std::cout<<"problem : newIn is true but should be false"<<std::endl;
// debug
/*
if (new_forces)
std::cout<<"Nouvelles forces détectées et ajoutées"<<std::endl;
*/
// accumulate DF jusqu'au block d'ordre le plus élevé dans Iout
// on accumule les forces en parcourant la structure par ordre croissant
// si la valeur max du "out" est plus petite que la valeur du block courant, c'est qu'on a fini de parcourir la strucure => on remonte jusqu'à "first_block" (pour l'instant, jusqu'à 0 pour debug)
int block_out = *Iout.begin();
///////////////////////// step2 parcours de la structure pour descendre les déplacements /////////////////////////
if (block_out< current_block)
{
//debug
//std::cout<<" on remonte la structure : block_out= "<<block_out<<" current_block = "<<current_block<<std::endl;
//// on inverse le dernier block
//debug
//std::cout<<"Un = Kinv(n,n)*(accF + Fn) // accF="<<_acc_rh_current_block<<" - Fn= "<< this->systemRHVector->sub(current_block*bsize,bsize)<<std::endl;
/// Un = Kinv(n,n)*(accF + Fn)
//_acc_result.sub(current_block*bsize,bsize) = Minv.sub(current_block*bsize,current_block*bsize,bsize,bsize) * ( _acc_rh_current_block + this->systemRHVector->sub(current_block*bsize,bsize) );
/// Uacc = Kinv(n,n) * (accF+ Fn)
_acc_lh_current_block = Minv.sub(current_block*bsize,current_block*bsize,bsize,bsize) * this->systemRHVector->sub(current_block*bsize,bsize);
Vec_df[ current_block ] = this->systemRHVector->sub(current_block*bsize,bsize);
//debug
//std::cout<<"Uacc = Kinv("<<current_block<<","<<current_block<<")*Fn = "<<_acc_lh_current_block<<std::endl;
while (current_block> 0)
{
current_block--;
//std::cout<<"descente des déplacements : current_block = "<<current_block;
// Uacc += Hn,n+1 * Uacc
_acc_lh_current_block = -lambda[current_block]*_acc_lh_current_block;
// Un = Uacc
_acc_result.sub(current_block*bsize,bsize) = _acc_lh_current_block;
// debug
Vector Fn;
Fn =this->systemRHVector->sub(current_block*bsize,bsize);
if (Fn.norm()>0.0)
{
Vec_df[ current_block ] = this->systemRHVector->sub(current_block*bsize,bsize);
//std::cout<<"non null force detected on block "<<current_block<<" : Fn= "<< Fn;
// Uacc += Kinv* Fn
_acc_lh_current_block += Minv.sub(current_block*bsize,current_block*bsize,bsize,bsize) * this->systemRHVector->sub(current_block*bsize,bsize) ;
}
//std::cout<<std::endl;
}
//debug
//std::cout<<"VERIFY : current_block = "<<current_block<<" must be 0"<<std::endl;
//facc=f0;
_acc_rh_current_block = this->systemRHVector->sub(0,bsize);
// debug
Vector DF;
DF = Vec_df[0];
if (DF.norm()> 0.0)
std::cerr<<"WARNING: Vec_df added on block 0... strange..."<<std::endl;
//_acc_result.sub(0, bsize) += alpha_inv[0] * this->systemRHVector->sub(0,bsize);
// _rh_buf.sub(0,bsize) = this->systemRHVector->sub(0,bsize);
// accumulation of right hand term is reinitialized
// _acc_rh_current_block= this->systemRHVector->sub(0,bsize);
}
///////////////////////// step3 parcours de la structure pour remonter les forces /////////////////////////
while(current_block<block_out)
{
//std::cout<<"remontée des forces : current_block = "<<current_block<<std::endl;
// Fbuf = Fn
//std::cerr<<"Fbuf = Fn"<<std::endl;
// la contribution du block [current_block+1] est prise en compte dans le mouvement actuel : ne sert à rien ?? = _rh_buf n'est utilisé que pour calculer DF
//_rh_buf.sub((current_block+1)*bsize,bsize) = this->systemRHVector->sub((current_block+1)*bsize,bsize) ;
// Facc = Hn+1,n * Facc
//std::cerr<<"Facc = Hn+1,n * Facc"<<std::endl;
// on accumule les forces le long de la structure
/*
H_it = H.find( IndexPair(current_block+1,current_block) );
if (H_it==H.end())
{
std::cerr<<"WARNING : H["<<current_block+1<<"]["<<current_block<<"] not found"<<std::endl;
}
iHj=H_it->second;
// debug
Vector test;
test = _acc_rh_current_block;
_acc_rh_current_block = iHj * _acc_rh_current_block;
test = -lambda[current_block].t() * test;
test -= _acc_rh_current_block;
if (test.norm()>0.0000000001*_acc_rh_current_block.norm())
{
std::cerr<<"WARNING matrix iHj = \n"<<iHj<<"\n and lambda["<<current_block<<"].t() =\n"<<lambda[current_block].t()<<"\n are not equal !!!"<<std::endl;
}
*/
_acc_rh_current_block = -lambda[current_block].t() * _acc_rh_current_block;
current_block++;
// debug: Facc+=Fn
Vector toto;
toto = this->systemRHVector->sub(current_block*bsize,bsize);
_acc_rh_current_block += toto;
//std::cout<<"step3 : Facc+= F["<<current_block<<"] : result : Facc ="<<_acc_rh_current_block<<std::endl;
// df of current block is now included in _acc_rh_current_block
Vec_df[current_block] = 0;
//std::cout<<"Vec_df["<<current_block<<"] is set to zero: "<< Vec_df[current_block] <<std::endl;
}
///////////////////////// now current_block == block_out : on calcule le déplacement engendré ////////
//std::cout<<"VERIFY : current_block = "<<current_block<<" must be equal to block_out :"<<block_out<<std::endl;
//debug:
//bool show_result = false;
////////////////////////// step 4 on calcule le déplacement engendré sur les blocks en sortie ////////////////////////
for(block_it=Iout.begin();block_it!=Iout.end();block_it++)
{
int block = *block_it;
// debug
if (current_block>block)
std::cerr<<"WARNING : step 4 : blocks en sortie : current_block= "<<current_block<<" must be inferior or equal to block= "<<block<<" problem with sort in Iout"<<std::endl;
Vector LH_block;
LH_block.resize(bsize);
// un = Forces from
Vector PreviousU; // displacement of LH_block due to forces from on other blocks > block (from step 2)
PreviousU = _acc_result.sub(block*bsize,bsize);
LH_block = Minv.sub( block *bsize, current_block *bsize,bsize,bsize) * _acc_rh_current_block + PreviousU;
for (int b=current_block; b<block; b++)
{
Vector DF ;
DF = Vec_df[b+1];
if (DF.norm())
{
//std::cout<<"step 4. Vec_df["<<b+1<<"] in NOT 0: "<<DF<<" -> calcul du déplacement sur "<<block<<std::endl;
LH_block += Minv.sub( block *bsize, (b+1) *bsize,bsize,bsize) * DF;
}
else
{
//std::cout<<"step4. Vec_df["<<b+1<<"] is null :"<<DF<<std::endl;
}
}
/*
if (LH_block.norm()>0.0)
{
show_result=true;
std::cout<< " LH_block ["<<block<<"] = "<<LH_block<<" previousU = "<< PreviousU <<" _acc_rh_current_block = "<<_acc_rh_current_block<<std::endl;
}
else
{
std::cout<< " LH_block ["<<block<<"] is null "<<std::endl;
}
*/
if (verification.getValue())
{
Vector LH_block2;
LH_block2.resize(bsize);
LH_block2 = this->systemLHVector->sub(block*bsize,bsize);
//std::cout<< " solution ["<<block<<"] = "<<LH_block2<<std::endl;
Vector delta_result ;
delta_result= LH_block - LH_block2;
if (delta_result.norm() > 0.0001 * LH_block.norm() )
{
std::cout<<"++++++++++++++++++++++++++++++++ Problem : delta_result = "<<delta_result<<" +++++++++++++++++++++++++++++++++"<<std::endl;
// pour faire un seg fault:
delta_result += Minv.sub(0, 0,bsize+1,bsize) *delta_result ;
}
}
// apply the result on "this->systemLHVector"
this->systemLHVector->sub(block*bsize,bsize) = LH_block;
}
}
};
} // namespace linearsolver
} // namespace component
} // namespace sofa
#endif
|