This file is indexed.

/usr/include/sofa/component/odesolver/NewmarkImplicitSolver.h is in libsofa1-dev 1.0~beta4-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/******************************************************************************
*       SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4      *
*                (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS                    *
*                                                                             *
* This library is free software; you can redistribute it and/or modify it     *
* under the terms of the GNU Lesser General Public License as published by    *
* the Free Software Foundation; either version 2.1 of the License, or (at     *
* your option) any later version.                                             *
*                                                                             *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or       *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details.                                                           *
*                                                                             *
* You should have received a copy of the GNU Lesser General Public License    *
* along with this library; if not, write to the Free Software Foundation,     *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.          *
*******************************************************************************
*                               SOFA :: Modules                               *
*                                                                             *
* Authors: The SOFA Team and external contributors (see Authors.txt)          *
*                                                                             *
* Contact information: contact@sofa-framework.org                             *
******************************************************************************/
#ifndef SOFA_COMPONENT_ODESOLVER_NEWMARKIMPLICITSOLVER_H
#define SOFA_COMPONENT_ODESOLVER_NEWMARKIMPLICITSOLVER_H

#include <sofa/core/componentmodel/behavior/OdeSolver.h>
#include <sofa/component/odesolver/OdeSolverImpl.h>

namespace sofa
{

namespace component
{

namespace odesolver
{

using namespace sofa::defaulttype;

/** Implicit time integrator using Newmark scheme.
 *
 * This integration scheme is based on the following equations:
 *
 *   $x_{t+h} = x_t + h v_t + h^2/2 ( (1-2\beta) a_t + 2\beta a_{t+h} )$
 *   $v_{t+h} = v_t + h ( (1-\gamma) a_t + \gamma a_{t+h} )$
 *
 * Applied to a mechanical system where $ M a_t + (r_M M + r_K K) v_t + K x_t = f_ext$, we need to solve the following system:
 *
 *   $ M a_{t+h} + (r_M M + r_K K) v_{t+h} + K x_{t+h} = f_ext $
 *   $ M a_{t+h} + (r_M M + r_K K) ( v_t + h ( (1-\gamma) a_t + \gamma a_{t+h} ) ) + K ( x_t + h v_t + h^2/2 ( (1-2\beta) a_t + 2\beta a_{t+h} ) ) = f_ext $
 *   $ ( M + h \gamma (r_M M + r_K K) + h^2 \beta K ) a_{t+h} = f_ext - (r_M M + r_K K) ( v_t + h (1-\gamma) a_t ) - K ( x_t + h v_t + h^2/2 (1-2\beta) a_t ) $
 *   $ ( (1 + h \gamma r_M) M + (h^2 \beta + h \gamma r_K) K ) a_{t+h} = f_ext - (r_M M + r_K K) v_t - K x_t - (r_M M + r_K K) ( h (1-\gamma) a_t ) - K ( h v_t + h^2/2 (1-2\beta) a_t ) $
 *   $ ( (1 + h \gamma r_M) M + (h^2 \beta + h \gamma r_K) K ) a_{t+h} = a_t - (r_M M + r_K K) ( h (1-\gamma) a_t ) - K ( h v_t + h^2/2 (1-2\beta) a_t ) $
 *
 * The current implementation first computes $a_t$ directly (as in the explicit solvers), then solves the previous system to compute $a_{t+dt}$, and finally computes the new position and velocity.
 *
*/
class SOFA_COMPONENT_ODESOLVER_API NewmarkImplicitSolver : public sofa::component::odesolver::OdeSolverImpl
{
public:
    
    Data<double> f_rayleighStiffness;
    Data<double> f_rayleighMass;
    Data<double> f_velocityDamping;
    Data<bool> f_verbose;

    Data<double> f_gamma;
    Data<double> f_beta;

    NewmarkImplicitSolver();
    
    void solve (double dt, sofa::core::componentmodel::behavior::BaseMechanicalState::VecId xResult, sofa::core::componentmodel::behavior::BaseMechanicalState::VecId vResult);
    
    /// Given a displacement as computed by the linear system inversion, how much will it affect the velocity
    virtual double getVelocityIntegrationFactor() const
    {
        return 1.0; // getContext()->getDt();
    }
    
    /// Given a displacement as computed by the linear system inversion, how much will it affect the position
    virtual double getPositionIntegrationFactor() const
    {
        return getContext()->getDt(); //*getContext()->getDt());
    }

	/// Given an input derivative order (0 for position, 1 for velocity, 2 for acceleration),
	/// how much will it affect the output derivative of the given order.
    ///
    /// This method is used to compute the compliance for contact corrections.
	/// For example, a backward-Euler dynamic implicit integrator would use:
	/// Input:      x_t  v_t  a_{t+dt}
	/// x_{t+dt}     1    dt  dt^2
	/// v_{t+dt}     0    1   dt
	///
	/// If the linear system is expressed on s = a_{t+dt} dt, then the final factors are:
	/// Input:      x_t   v_t    a_t  s
	/// x_{t+dt}     1    dt     0    dt
	/// v_{t+dt}     0    1      0    1
	/// a_{t+dt}     0    0      0    1/dt
	/// The last column is returned by the getSolutionIntegrationFactor method.
	double getIntegrationFactor(int inputDerivative, int outputDerivative) const 
	{
		const double dt = getContext()->getDt();
		double matrix[3][3] = {
			{ 1, dt, 0},
			{ 0, 1, 0},
			{ 0, 0, 0}};
		if (inputDerivative >= 3 || outputDerivative >= 3)
			return 0;
		else
			return matrix[outputDerivative][inputDerivative];
	}

	/// Given a solution of the linear system,
	/// how much will it affect the output derivative of the given order.
	double getSolutionIntegrationFactor(int outputDerivative) const
	{
		const double dt = getContext()->getDt();
		double vect[3] = { dt, 1, 1/dt};
		if (outputDerivative >= 3)
			return 0;
		else
			return vect[outputDerivative];
	}

};

} // namespace odesolver

} // namespace component

} // namespace sofa

#endif