/usr/include/sofa/component/topology/SparseGridTopology.h is in libsofa1-dev 1.0~beta4-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | /******************************************************************************
* SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4 *
* (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS *
* *
* This library is free software; you can redistribute it and/or modify it *
* under the terms of the GNU Lesser General Public License as published by *
* the Free Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this library; if not, write to the Free Software Foundation, *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
*******************************************************************************
* SOFA :: Modules *
* *
* Authors: The SOFA Team and external contributors (see Authors.txt) *
* *
* Contact information: contact@sofa-framework.org *
******************************************************************************/
#ifndef SOFA_COMPONENT_TOPOLOGY_SPARSEGRIDTOPOLOGY_H
#define SOFA_COMPONENT_TOPOLOGY_SPARSEGRIDTOPOLOGY_H
#include <string>
#include <sofa/component/topology/MeshTopology.h>
#include <sofa/helper/MarchingCubeUtility.h>
#include <sofa/defaulttype/Vec.h>
#include <sofa/component/topology/RegularGridTopology.h>
#include <sofa/helper/io/Mesh.h>
#include <sofa/component/container/VoxelGridLoader.h>
namespace sofa
{
namespace component
{
namespace topology
{
using namespace sofa::defaulttype;
using sofa::helper::MarchingCubeUtility;
/** A sparse grid topology. Like a sparse FFD building from the bounding box of the object. Starting from a RegularGrid, only valid cells containing matter (ie intersecting the original surface mesh or totally inside the object) are considered.
Valid cells are tagged by a Type BOUNDARY or INSIDE
WARNING: the corresponding node in the XML file has to be placed BEFORE the MechanicalObject node, in order to excute its init() before the MechanicalObject one in order to be able to give dofs
*/
class SOFA_COMPONENT_CONTAINER_API SparseGridTopology : public MeshTopology
{
public:
typedef fixed_array<Vector3,8> CubeCorners;
typedef enum{OUTSIDE,INSIDE,BOUNDARY} Type; ///< each cube has a type depending on its filling ratio
typedef Vec<3, int> Vec3i;
SparseGridTopology(bool _isVirtual=false);
// virtual void reinit() {updateMesh();};
// static const float WEIGHT[8][8];
static const float WEIGHT27[8][27];
static const int cornerIndicesFromFineToCoarse[8][8];
bool load(const char* filename);
virtual void init();
virtual void buildAsFinest(); ///< building from a mesh file
virtual void buildFromFiner(); ///< building by condensating a finer sparse grid (used if setFinerSparseGrid has initializated _finerSparseGrid before calling init() )
virtual void buildVirtualFinerLevels(); ///< building eventual virtual finer levels (cf _nbVirtualFinerLevels)
typedef std::map<Vector3,int> MapBetweenCornerPositionAndIndice;///< a vertex indice for a given vertex position in space
/// connexion between several coarsened levels
typedef std::vector<fixed_array<int,8> > HierarchicalCubeMap; ///< a cube indice -> corresponding 8 child indices on the potential _finerSparseGrid
HierarchicalCubeMap _hierarchicalCubeMap;
typedef helper::vector<int> InverseHierarchicalCubeMap; ///< a fine cube indice -> corresponding coarser cube indice
InverseHierarchicalCubeMap _inverseHierarchicalCubeMap;
typedef std::map<int,float> AHierarchicalPointMap;
// typedef helper::vector< std::pair<int,float> > AHierarchicalPointMap;
typedef helper::vector< AHierarchicalPointMap > HierarchicalPointMap; ///< a point indice -> corresponding 27 child indices on the potential _finerSparseGrid with corresponding weight
HierarchicalPointMap _hierarchicalPointMap;
typedef helper::vector< AHierarchicalPointMap > InverseHierarchicalPointMap; ///< a fine point indice -> corresponding some parent points for interpolation
InverseHierarchicalPointMap _inverseHierarchicalPointMap;
typedef helper::vector< int > PointMap;
PointMap _pointMap; ///< a coarse point indice -> corresponding point in finer level
PointMap _inversePointMap; ///< a fine point indice -> corresponding point in coarser level
enum{UP,DOWN,RIGHT,LEFT,BEFORE,BEHIND,NUM_CONNECTED_NODES};
typedef helper::vector< helper::fixed_array<int,NUM_CONNECTED_NODES> > NodeAdjacency; ///< a node -> its 6 neighboors
NodeAdjacency _nodeAdjacency;
typedef helper::vector< helper::vector<int> >NodeCubesAdjacency; ///< a node -> its 8 neighboor cells
NodeCubesAdjacency _nodeCubesAdjacency;
typedef helper::vector< helper::vector<int> >NodeCornersAdjacency; ///< a node -> its 8 corners of neighboor cells
NodeCornersAdjacency _nodeCornersAdjacency;
helper::vector<SparseGridTopology*> _virtualFinerLevels; ///< saving the virtual levels (cf _nbVirtualFinerLevels)
Vec<3, int> getN() const { return n.getValue();}
int getNx() const { return n.getValue()[0]; }
int getNy() const { return n.getValue()[1]; }
int getNz() const { return n.getValue()[2]; }
void setN(Vec3i _n) {n.setValue(_n);}
void setNx(int _n) { n.setValue(Vec3i(_n ,n.getValue()[1],n.getValue()[2])); }
void setNy(int _n) { n.setValue(Vec3i(n.getValue()[0],_n ,n.getValue()[2])); }
void setNz(int _n) { n.setValue(Vec3i(n.getValue()[0],n.getValue()[1],_n) ); }
int getNbVirtualFinerLevels() const { return _nbVirtualFinerLevels.getValue();}
void setNbVirtualFinerLevels(int n) {_nbVirtualFinerLevels.setValue(n);}
void setMin(Vector3 val) {_min.setValue(val);}
void setXmin(SReal val) { _min.setValue(Vector3(val ,_min.getValue()[1],_min.getValue()[2])); }
void setYmin(SReal val) { _min.setValue(Vector3(_min.getValue()[0],val ,_min.getValue()[2])); }
void setZmin(SReal val) { _min.setValue(Vector3(_min.getValue()[0],_min.getValue()[1],val) ); }
void setMax(Vector3 val) {_max.setValue(val);}
void setXmax(SReal val) { _max.setValue(Vector3(val ,_max.getValue()[1],_max.getValue()[2])); }
void setYmax(SReal val) { _max.setValue(Vector3(_max.getValue()[0],val ,_max.getValue()[2])); }
void setZmax(SReal val) { _max.setValue(Vector3(_max.getValue()[0],_max.getValue()[1],val) ); }
Vector3 getMin() {return _min.getValue();}
SReal getXmin() { return _min.getValue()[0]; }
SReal getYmin() { return _min.getValue()[1]; }
SReal getZmin() { return _min.getValue()[2]; }
Vector3 getMax() {return _max.getValue();}
SReal getXmax() { return _max.getValue()[0]; }
SReal getYmax() { return _max.getValue()[1]; }
SReal getZmax() { return _max.getValue()[2]; }
bool hasPos() const{ return true; }
/// return the cube containing the given point (or -1 if not found),
/// as well as deplacements from its first corner in terms of dx, dy, dz (i.e. barycentric coordinates).
virtual int findCube(const Vector3& pos, SReal& fx, SReal &fy, SReal &fz);
/// return the cube containing the given point (or -1 if not found),
/// as well as deplacements from its first corner in terms of dx, dy, dz (i.e. barycentric coordinates).
virtual int findNearestCube(const Vector3& pos, SReal& fx, SReal &fy, SReal &fz);
/// return indices of 6 neighboor cubes
virtual helper::fixed_array<int,6> findneighboorCubes( int indice );
/// return the type of the i-th cube
virtual Type getType( int i );
/// return the stiffness coefficient of the i-th cube
virtual float getStiffnessCoef(int elementIdx);
/// return the mass coefficient of the i-th cube
virtual float getMassCoef(int elementIdx);
SparseGridTopology* getFinerSparseGrid() const {return _finerSparseGrid;}
void setFinerSparseGrid( SparseGridTopology* fsp ){_finerSparseGrid=fsp;}
SparseGridTopology* getCoarserSparseGrid() const {return _coarserSparseGrid;}
void setCoarserSparseGrid( SparseGridTopology* csp ){_coarserSparseGrid=csp;}
void updateMesh();
RegularGridTopology _regularGrid; ///< based on a corresponding RegularGrid
vector< int > _indicesOfRegularCubeInSparseGrid; ///< to redirect an indice of a cube in the regular grid to its indice in the sparse grid
vector< int > _indicesOfCubeinRegularGrid; ///< to redirect an indice of a cube in the sparse grid to its indice in the regular grid
Vector3 getPointPos( int i ){ return Vector3( seqPoints.getValue()[i][0],seqPoints.getValue()[i][1],seqPoints.getValue()[i][2] ); }
void getMesh( sofa::helper::io::Mesh &m);
void setDimVoxels( int a, int b, int c){ dataResolution.setValue(Vec3i(a,b,c));}
void setSizeVoxel( float a, float b, float c){ voxelSize.setValue(Vector3(a,b,c));}
bool getVoxel(unsigned int x, unsigned int y, unsigned int z)
{
return getVoxel(dataResolution.getValue()[0]*dataResolution.getValue()[1]*z + dataResolution.getValue()[0]*y + x);
}
bool getVoxel(unsigned int index) const
{
return dataVoxels.getValue()[index]==1;
};
Data< vector< unsigned char > > dataVoxels;
Data<bool> _fillWeighted; // is quantity of matter inside a cell taken into account?
protected:
bool isVirtual;
/// cutting number in all directions
Data< Vec<3, int> > n;
Data< Vector3 > _min;
Data< Vector3 > _max;
Data< int > _nbVirtualFinerLevels; ///< create virtual (not in the animation tree) finer sparse grids in order to dispose of finest information (usefull to compute better mechanical properties for example)
Data< Vec3i > dataResolution;
Data< Vector3 > voxelSize;
Data< unsigned int > marchingCubeStep;
Data< unsigned int > convolutionSize;
virtual void updateEdges();
virtual void updateQuads();
virtual void updateHexas();
MarchingCubeUtility marchingCubes;
bool _usingMC;
sofa::helper::vector<Type> _types; ///< BOUNDARY or FULL filled cells
helper::vector< float > _stiffnessCoefs; ///< a stiffness coefficient per hexa (BOUNDARY=.5, FULL=1)
helper::vector< float > _massCoefs; ///< a stiffness coefficient per hexa (BOUNDARY=.5, FULL=1)
/// start from a seed cell (i,j,k) the OUTSIDE filling is propagated to neighboor cells until meet a BOUNDARY cell (this function is called from all border cells of the RegularGrid)
void propagateFrom( const int i, const int j, const int k,
RegularGridTopology& regularGrid,
vector<Type>& regularGridTypes,
vector<bool>& alreadyTested ) const;
void computeBoundingBox(const helper::vector<Vector3>& vertices,
SReal& xmin, SReal& xmax,
SReal& ymin, SReal& ymax,
SReal& zmin, SReal& zmax) const;
void voxelizeTriangleMesh(helper::io::Mesh* mesh,
RegularGridTopology& regularGrid,
vector<Type>& regularGridTypes) const;
void buildFromTriangleMesh(const std::string& filename);
void buildFromRegularGridTypes(RegularGridTopology& regularGrid, const vector<Type>& regularGridTypes);
/** Create a sparse grid from a .voxel file
.voxel file format (ascii):
512 // num voxels x
512 // num voxels y
246 // num voxels z
0.7 // voxels size x [mm]
0.7 // voxels size y [mm]
2 // voxels size z [mm]
0 0 255 0 0 ... // data
*/
void buildFromVoxelFile(const std::string& filename);
void buildFromRawVoxelFile(const std::string& filename);
void buildFromVoxelGridLoader(VoxelGridLoader * loader);
template< class T>
void constructCollisionModels(const sofa::helper::vector< sofa::core::componentmodel::topology::BaseMeshTopology * > &list_mesh,
const sofa::helper::vector< sofa::helper::vector< Vec<3,T> >* > &list_X) ;
SparseGridTopology* _finerSparseGrid; ///< an eventual finer sparse grid that can be used to built this coarser sparse grid
SparseGridTopology* _coarserSparseGrid; ///< an eventual coarser sparse grid
void setVoxel(int index, unsigned char value){
if (value)
{
(*dataVoxels.beginEdit())[index] = 1;
}
else
{
(*dataVoxels.beginEdit())[index] = 0;
}
};
/* /// to compute valid cubes (intersection between mesh segments and cubes)
typedef struct segmentForIntersection{
Vector3 center;
Vector3 dir;
SReal norm;
segmentForIntersection(const Vector3& s0, const Vector3& s1)
{
center = (s0+s1)*.5;
dir = center-s0;
norm = dir.norm();
dir /= norm;
};
} SegmentForIntersection;
struct ltSegmentForIntersection // for set of SegmentForIntersection
{
bool operator()(const SegmentForIntersection& s0, const SegmentForIntersection& s1) const
{
return s0.center < s1.center || s0.norm < s1.norm;
}
};
typedef struct cubeForIntersection{
Vector3 center;
fixed_array<Vector3,3> dir;
Vector3 norm;
cubeForIntersection( const CubeCorners& corners )
{
center = (corners[7] + corners[0]) * .5;
norm[0] = (center[0] - corners[0][0]);
dir[0] = Vector3(1,0,0);
norm[1] = (center[1] - corners[0][1]);
dir[1] = Vector3(0,1,0);
norm[2] = (center[2] - corners[0][2]);
dir[2] = Vector3(0,0,1);
}
} CubeForIntersection;
/// return true if there is an intersection between a SegmentForIntersection and a CubeForIntersection
bool intersectionSegmentBox( const SegmentForIntersection& seg, const CubeForIntersection& cube ); */
bool _alreadyInit;
public :
#ifdef SOFA_NEW_HEXA
virtual const SeqHexas& getHexas()
{
if( !_alreadyInit ) init();
return sofa::component::topology::MeshTopology::getHexas();
}
#else
virtual const SeqCubes& getHexas()
{
if( !_alreadyInit ) init();
return sofa::component::topology::MeshTopology::getHexas();
}
#endif
virtual int getNbPoints() const
{
if( !_alreadyInit ) const_cast<SparseGridTopology*>(this)->init();
return sofa::component::topology::MeshTopology::getNbPoints();
}
virtual int getNbHexas() { return this->getHexas().size();}
};
} // namespace topology
} // namespace component
} // namespace sofa
#endif
|