/usr/include/sofa/gpu/cuda/CudaLCP.inl is in libsofa1-dev 1.0~beta4-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 | /******************************************************************************
* SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4 *
* (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS *
* *
* This library is free software; you can redistribute it and/or modify it *
* under the terms of the GNU Lesser General Public License as published by *
* the Free Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this library; if not, write to the Free Software Foundation, *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
*******************************************************************************
* SOFA :: Modules *
* *
* Authors: The SOFA Team and external contributors (see Authors.txt) *
* *
* Contact information: contact@sofa-framework.org *
******************************************************************************/
int CudaLCP_MultVector_ResSize(unsigned int dim) {
return (dim+BSIZE-1)/BSIZE;
}
int CudaNLCP_MultVector_ResSize(unsigned int dim) {
return (dim+MBSIZE-1)/MBSIZE;
}
///////////////////////////////////////1er version
void CudaLCP_MultVectorf(int dim,int index, const void * m,const void * f,void * r) {
dim3 threads(BSIZE,1);
dim3 grid((dim+BSIZE-1)/BSIZE,1);
CudaLCP_MultVector_kernel<float><<< grid, threads, threads.x*sizeof(float) >>>(dim, index, (const float*)m, (const float*)f, (float*)r, BSIZE/2);
}
void CudaLCP_MultVectord(int dim,int index, const void * m,const void * f,void * r) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(BSIZE,1);
dim3 grid((dim+BSIZE-1)/BSIZE,1);
CudaLCP_MultVector_kernel<double><<< grid, threads, threads.x*sizeof(double) >>>(dim, index, (const double*)m, (const double*)f, (double*)r, BSIZE/2);
#endif
}
void CudaLCP_ComputeErrorf(int compteur2,int sizeTmp, const void * tmp, const void * M,const void * q,void * f,void * error) {
dim3 threads(sizeTmp,1);
dim3 grid(1,1);
int offset;
if (sizeTmp==1) offset = 0;
else {
offset = 1;
while (offset*2 < sizeTmp) offset *= 2;
}
CudaLCP_ComputeError_kernel<float><<< grid, threads, threads.x*sizeof(float) >>>(compteur2,(const float*)tmp, (const float*)M,(const float*)q, (float*)f,(float*)error,offset);
}
void CudaLCP_ComputeErrord(int compteur2,int sizeTmp, const void * tmp, const void * M,const void * q,void * f,void * error) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(sizeTmp,1);
dim3 grid(1,1);
int offset;
if (sizeTmp==1) offset = 0;
else {
offset = 1;
while (offset*2 < sizeTmp) offset *= 2;
}
CudaLCP_ComputeError_kernel<double><<< grid, threads, threads.x*sizeof(double) >>>(compteur2,(const double*)tmp, (const double*)M,(const double*)q, (double*)f,(double*)error,offset);
#endif
}
//////////////////////////////2em version
/*
for (int i=0;i<dim;i++) {
cuda_res[i] = cuda_q[i];
for (int j=0;j<dim;j++) {
if (j>i) cuda_res[i] += cuda_M[i][j] * cuda_f[j];
}
}
*/
void CudaLCP_MultIndepf(int dim,const void * m,int pM,const void * f,void * tmp,int pTmp) {
dim3 threads(BSIZE,1);
dim3 grid((dim+BSIZE-1)/BSIZE,dim);
CudaLCP_MultIndep_kernel<float><<< grid, threads,0>>>(dim, (const float*)m,pM,(const float*)f,(float*)tmp,pTmp,BSIZE/2);
}
void CudaLCP_MultIndepd(int dim,const void * m,int pM,const void * f,void * tmp,int pTmp) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(BSIZE,1);
dim3 grid((dim+BSIZE-1)/BSIZE,dim);
CudaLCP_MultIndep_kernel<double><<< grid, threads,0>>>(dim, (const double*)m,pM,(const double*)f,(double*)tmp,pTmp,BSIZE/2);
#endif
}
/*
for (int j=0;j<dim;j++) {
cuda_res[j] = cuda_q[i];
for (int i=0;i<tmpsize;i++) {
cuda_res[j] += cuda_tmp[i][j];
}
}
*/
void CudaLCP_AddIndepf(int dim,int tmpsize,const void * tmp,int pTmp,void * res) {
dim3 threads(tmpsize,1);
dim3 grid(dim,1);
CudaLCP_AddIndep_kernel<float><<< grid, threads,threads.x*sizeof(float)>>>(tmpsize,(const float*)tmp,pTmp,(float*)res);
}
void CudaLCP_AddIndepd(int dim,int tmpsize,const void * tmp,int pTmp,void * res) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(tmpsize,1);
dim3 grid(dim,1);
CudaLCP_AddIndep_kernel<double><<< grid, threads,threads.x*sizeof(double)>>>(tmpsize,(const double*)tmp,pTmp,(double*)res);
#endif
}
void CudaLCP_AddIndepAndUpdatef(int dim,int tmpsize,const void * m,const void * q,const void * tmp,int pTmp,void * f,void * res,void * err) {
dim3 threads(tmpsize,1);
dim3 grid(dim,1);
CudaLCP_AddIndepAndUpdate_kernel<float><<< grid, threads,threads.x*sizeof(float)>>>(dim,tmpsize,(const float*)m,(const float*)q,(const float*)tmp,pTmp,(float*)f,(float*)res,(float*)err,tmpsize);
}
void CudaLCP_AddIndepAndUpdated(int dim,int tmpsize,const void * m,const void * q,const void * tmp,int pTmp,void * f,void * res,void * err) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(tmpsize,1);
dim3 grid(dim,1);
CudaLCP_AddIndepAndUpdate_kernel<double><<< grid, threads,threads.x*sizeof(double)>>>(dim,tmpsize,(const double*)m,(const double*)q,(const double*)tmp,pTmp,(double*)f,(double*)res,(double*)err,tmpsize);
#endif
}
/*
float f_1 = cuda_f[compteur2];
if (cuda_res[compteur2]<0) cuda_f[compteur2] = -cuda_res[compteur2]/cuda_M[compteur2][compteur2];
else cuda_f[compteur2]=0.0;
cuda_err[0] += fabs(cuda_M[compteur2][compteur2] * (cuda_f[compteur2] - f_1));
cuda_err[1] = f_1;
for (int compteur3=0;compteur3<dim;compteur3++) {
if (compteur3!=compteur2) cuda_res[compteur3] += cuda_M[compteur3][compteur2] * (cuda_f[compteur2] - cuda_err[1]);
}
*/
void CudaLCP_ComputeNextIter_V2f(int dim,int compteur2,const void * m,int mP,const void * q,void * f,void * err,void * res) {
dim3 threads(BSIZE,1);
dim3 grid((dim+BSIZE-1)/BSIZE,1);
CudaLCP_ComputeNextIter_kernel_V2<float><<< grid, threads,0 >>>(dim,compteur2,(const float*) m,mP,(const float *) q,(float*)f, (float*) err,(float *)res);
}
void CudaLCP_ComputeNextIter_V2d(int dim,int compteur2,const void * m,int mP,const void * q,void * f,void * err,void * res) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(BSIZE,1);
dim3 grid((dim+BSIZE-1)/BSIZE,1);
CudaLCP_ComputeNextIter_kernel_V2<double><<< grid, threads,0 >>>(dim,compteur2,(const double*) m,mP,(const double *) q,(double*)f, (double*) err,(double *)res);
#endif
}
/////////////////////////////////3em version
void CudaLCP_ComputeNextIter_V3_OneKernelf(int dim,const void * m,int mP,const void * q,void * f,void * err,void * res) {
dim3 threads(dim,1);
dim3 grid(1,1);
CudaLCP_ComputeNextIter_V3_OneKernel_kernel<float><<< grid, threads,0 >>>(dim,(const float*) m,mP,(const float *) q,(float*)f, (float*) err,(float *)res);
}
void CudaLCP_ComputeNextIter_V3_OneKerneld(int dim,const void * m,int mP,const void * q,void * f,void * err,void * res) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(dim,1);
dim3 grid(1,1);
CudaLCP_ComputeNextIter_V3_OneKernel_kernel<double><<< grid, threads,0 >>>(dim,(const double*) m,mP,(const double *) q,(double*)f, (double*) err,(double *)res);
#endif
}
////////////////////////////4em version
/*
for (int block=0; block<d; block++) {
int compteur2 = debutblock+block;
float f_1 = cuda_f[compteur2];
float f_2;
if (cuda_res[compteur2]<0) f_2 = -cuda_res[compteur2]/cuda_M[compteur2][compteur2];
else f_2=0.0;
cuda_f[compteur2] = f_2;
cuda_res[compteur2] = cuda_q[compteur2];
cuda_err[0] += fabs(cuda_M[compteur2][compteur2] * (f_2 - f_1));
for (int compteur3=debutblock;compteur3<debutblock+d;compteur3++) {
if (compteur3!=compteur2) cuda_res[compteur3] += cuda_M[compteur2][compteur3] * f_2;
}
}
*/
void CudaLCP_ComputeNextIter_V4_DepKernelf(int d,int debutblock,const void * m,int mP,const void * q,void * f,void * err,void * res) {
dim3 threads(BSIZE,1);
dim3 grid(1,1);
CudaLCP_ComputeNextIter_V4_DepKernel_kernel<float><<< grid, threads,0>>>(d,debutblock,(const float*) m,mP,(const float *) q,(float*)f, (float*) err,(float *)res);
}
void CudaLCP_ComputeNextIter_V4_DepKerneld(int d,int debutblock,const void * m,int mP,const void * q,void * f,void * err,void * res) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(BSIZE,1);
dim3 grid(1,1);
CudaLCP_ComputeNextIter_V4_DepKernel_kernel<double><<< grid, threads,0>>>(d,debutblock,(const double*) m,mP,(const double *) q,(double*)f, (double*) err,(double *)res);
#endif
}
/*
for (int compteur4=0;compteur4<dim-d;compteur4++) {
int ligne = compteur4;
if (compteur4>=debutblock) ligne+=BSIZE;
for (int k=debutblock;k<debutblock+d;k++) {
cuda_res[ligne]+= cuda_M[k][ligne] * cuda_f[k];
}
}
*/
void CudaLCP_ComputeNextIter_V4_InDepKernelf(int dim,int d,int debutBlock,const void * m,int mP,const void * f,void * res) {
dim3 threads(BSIZE,1);
dim3 grid(1,V4_MAX_LINE);
CudaLCP_ComputeNextIter_V4_InDepKernel_kernel<float><<< grid, threads,0>>>(dim,debutBlock,(const float*) m,mP,(const float*)f, (float *)res,BSIZE/2);
}
void CudaLCP_ComputeNextIter_V4_InDepKerneld(int dim,int d,int debutBlock,const void * m,int mP,const void * f,void * res) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(BSIZE,1);
dim3 grid(1,V4_MAX_LINE);
CudaLCP_ComputeNextIter_V4_InDepKernel_kernel<double><<< grid, threads,0>>>(dim,debutBlock,(const double*) m,mP,(const double*)f, (double *)res,BSIZE/2);
#endif
}
////////////////////////////////////////5em version
/*
for (int compteur2=0; compteur2<BSIZE;compteur2++) { //calcule le bloc en haut a gauche pour lancer le calcul
float f_2;
if (cuda_res[compteur2]<0) f_2 = -cuda_res[compteur2]/cuda_M[compteur2][compteur2];
else f_2=0.0;
cuda_f[compteur2] = f_2;
cuda_res[compteur2] = cuda_q[compteur2];
for (int compteur3=0;compteur3<BSIZE;compteur3++) {
if (compteur3!=compteur2) cuda_res[compteur3] += cuda_M[compteur3][compteur2] * f_2;
}
}
*/
void CudaLCP_ComputeNextIter_V5_FirstKernelf(const void * m,int mP,const void * q,void * f,void * res) {
dim3 threads(BSIZE,1);
dim3 grid(1,1);
CudaLCP_ComputeNextIter_V5_FirstKernel_kernel<float><<< grid, threads,0 >>>((const float*) m,mP,(const float *) q,(float*)f,(float *)res);
}
void CudaLCP_ComputeNextIter_V5_FirstKerneld(const void * m,int mP,const void * q,void * f,void * res) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(BSIZE,1);
dim3 grid(1,1);
CudaLCP_ComputeNextIter_V5_FirstKernel_kernel<double><<< grid, threads,0 >>>((const double*) m,mP,(const double *) q,(double*)f,(double *)res);
#endif
}
/*
for (int j=0;j<d;j++) {
int compteur2=ligne+j;//ligne du bloc en cours
float acc=0.0;
for (int index1=0;index1<BSIZE;index1++) {//calcul du 1er bloc independant
int dc = index1+colone;
if (dc<dim) acc += cuda_M[dc][compteur2] * cuda_f[dc];
}
float r_calc = cuda_res[compteur2]+acc;
float f_1 = cuda_f[compteur2];
float f_2;
if (r_calc<0) f_2 = -r_calc/cuda_M[compteur2][compteur2];
else f_2=0.0;
cuda_f[compteur2] = f_2;
cuda_res[compteur2] = cuda_q[compteur2];
cuda_err[0] += fabs(cuda_M[compteur2][compteur2] * (f_2 - f_1));
for (int index1=0;index1<BSIZE;index1++) {//calcul du 1er bloc independant
int compteur3 = ligne+index1;
if ((compteur3<dim) && (compteur3!=compteur2)) cuda_res[compteur3] += cuda_M[compteur2][compteur3] * f_2;
}
}
for (int j=0;j<nbth;j++) {
int dl=j;
if (ligne-BSIZE<0) dl+=BSIZE;
else if (j>=ligne-BSIZE) dl+=2*BSIZE;
for (int i=0;i<BSIZE;i++) {
int dc = colone+i;
if (dc<dim) cuda_res[dl]+= cuda_M[dc][dl] * cuda_f[dc];
}
}
*/
void CudaLCP_ComputeNextIter_V5_SecondKernelf(int dim,int nbth,int d,int ligne,int colone,const void * m,int mP,const void * q,void * f,void * err,void * res) {
dim3 threads(BSIZE,1);
dim3 grid(1,nbth+1);
CudaLCP_ComputeNextIter_V5_SecondKernel_kernel<float><<< grid, threads,0 /*,threads.x*sizeof(float)*/ >>>(dim,d,ligne,colone,(const float*) m,mP,(const float *) q,(float*)f,(float*)err,(float *)res,BSIZE/2);
}
void CudaLCP_ComputeNextIter_V5_SecondKerneld(int dim,int nbth,int d,int ligne,int colone,const void * m,int mP,const void * q,void * f,void * err,void * res) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(BSIZE,1);
dim3 grid(1,nbth+1);
CudaLCP_ComputeNextIter_V5_SecondKernel_kernel<double><<< grid, threads,0 /*,threads.x*sizeof(double)*/ >>>(dim,d,ligne,colone,(const double*) m,mP,(const double *) q,(double*)f,(double*)err,(double *)res,BSIZE/2);
#endif
}
///////////////////////////////////////////////////6em version
void CudaLCP_FullKernel_V6f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
dim3 threads(BSIZE_C,1);
dim3 grid(1,NB_MULTIPROC);
CudaLCP_FullKernel_V6_kernel<<< grid, threads,threads.x*threads.y*sizeof(float)>>>(dim,dim*itMax,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
}
void CudaLCP_FullKernel_V6d(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(BSIZE_C,1);
dim3 grid(1,NB_MULTIPROC);
CudaLCP_FullKernel_V6_kernel<<< grid, threads,threads.x*threads.y*sizeof(double)>>>(dim,dim*itMax,(double)tol,(const double *) m,mP,(const double *) q,(double *) f,(double *) err,(int *) share);
#endif
}
/////////////////////////////////////////////////7 em version
void CudaLCP_FullKernel_V7f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
dim3 threads(BSIZE_C,BSIZE_L);
dim3 grid(1,NB_MULTIPROC);
int dim_n = (dim+BSIZE_L-1)/BSIZE_L * BSIZE_L;
CudaLCP_FullKernel_V7_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
}
void CudaLCP_FullKernel_V7d(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(BSIZE_C,BSIZE_L);
dim3 grid(1,NB_MULTIPROC);
int dim_n = (dim+BSIZE_L-1)/BSIZE_L * BSIZE_L;
CudaLCP_FullKernel_V7_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,(double)tol,(const double *) m,mP,(const double *) q,(double *) f,(double *) err,(int *) share);
#endif
}
//////////////////version 8
void CudaLCP_FullKernel_V8f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
dim3 threads(V8_BSIZE,V8_BSIZE);
dim3 grid(1,V8_NBPROC);
int dim_n = (dim+V8_BSIZE-1)/V8_BSIZE * V8_BSIZE;
CudaLCP_FullKernel_V8_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
}
void CudaLCP_FullKernel_V8d(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(V8_BSIZE,V8_BSIZE);
dim3 grid(1,V8_NBPROC);
int dim_n = (dim+V8_BSIZE-1)/V8_BSIZE * V8_BSIZE;
CudaLCP_FullKernel_V8_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,(double)tol,(const double *) m,mP,(const double *) q,(double *) f,(double *) err,(int *) share);
#endif
}
//////////////////version 9
void CudaLCP_FullKernel_V9f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
double dim_n_d = (dim + V9_NBPROC * 2.0 - 1.0) / (V9_NBPROC * 2.0);
double alloc_d = 5 * dim_n_d + dim * dim_n_d * 2 + dim_n_d * dim_n_d;
unsigned dim_n = (unsigned) dim_n_d;
unsigned alloc = (unsigned) alloc_d;
if (dim_n*dim_n*V9_NBREG_USED>V9_NBREG) {
myprintf("Utilisation de la version 8 car il y a trop de registres utilisés (used = %d , max = %d)\n",dim_n*dim_n*V9_NBREG_USED,V9_NBREG);
//CudaLCP_FullKernel_V8f(dim,itMax,tol,m,mP,q,f,err,share);
} else if (dim>V9_SZMAX) {
myprintf("Utilisation de la version 8 car il y a trop de contacts (max = %d , dim = %d)\n",V9_SZMAX,dim);
//CudaLCP_FullKernel_V8f(dim,itMax,tol,m,mP,q,f,err,share);
} else {
//unsigned dim_n = (dim + V9_NBPROC * 2 - 1) / (V9_NBPROC * 2);
//unsigned alloc = dim_n + dim_n + dim_n + dim * dim_n + dim * dim_n + dim_n * dim_n;
dim3 threads(dim_n,dim_n);
dim3 grid(1,V9_NBPROC);
//printf("\nallocSize %d maxSize = %d blocsize= %d\n",alloc,V9_SZMAX,dim_n);
switch(dim_n)
{
#define CASE(N) \
case N: \
CudaLCP_FullKernel_V9_kernel<float,N><<< grid, threads, alloc * sizeof(float)>>>(dim,itMax*V9_NBPROC_2*dim_n,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share); \
break
CASE(1);
CASE(2);
CASE(3);
CASE(4);
CASE(5);
CASE(6);
CASE(7);
CASE(8);
CASE(9);
CASE(10);
CASE(11);
CASE(12);
CASE(13);
CASE(14);
CASE(15);
CASE(16);
CASE(17);
CASE(18);
CASE(19);
CASE(20);
CASE(21);
CASE(22);
#undef CASE
}
//CudaLCP_FullKernel_V9_kernel<<< grid, threads, alloc * sizeof(float)>>>(dim,dim_n,V9_NBPROC*2,itMax,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
}
}
void CudaLCP_FullKernel_V9d(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
}
/*
void CudaLCP_FullKernel_V10f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
unsigned dim_n = 9;
if ((dim>0) && (dim<56)) dim_n = 9;
else dim_n = 9;
unsigned alloc = 5 * dim_n + dim * dim_n * 2 + dim_n * dim_n;
unsigned nbBlock = (dim + dim_n*2 - 1) / (dim_n*2);
if (nbBlock<=V10_NB_PROC) {
dim3 threads(dim_n,dim_n);
dim3 grid(1,nbBlock);
switch(dim_n)
{
#define CASE(N) \
case N: \
CudaLCP_FullKernel_V10_kernel<float,N><<< grid, threads, alloc * sizeof(float)>>>(dim,itMax*nbBlock*2*dim_n,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share); \
break
CASE(1);
CASE(2);
CASE(3);
CASE(4);
CASE(5);
CASE(6);
CASE(7);
CASE(8);
CASE(9);
CASE(10);
CASE(11);
CASE(12);
CASE(13);
CASE(14);
CASE(15);
CASE(16);
CASE(17);
CASE(18);
CASE(19);
CASE(20);
CASE(21);
CASE(22);
#undef CASE
}
//CudaLCP_FullKernel_V10_kernel<float,dim_n><<< grid, threads, alloc * sizeof(float)>>>(dim,itMax*nbBlock*2*dim_n,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
} else {
myprintf("Utilisation de la version 8 car il y a trop de multiprocesseurs utilisés (max = %d , dim = %d)\n",V10_NB_PROC,nbBlock);
//CudaLCP_FullKernel_V8f(dim,itMax,tol,m,mP,q,f,err,share);
}
}
*/
void CudaLCP_FullKernel_V10f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
unsigned alloc = 5 * V10_DIM_N + dim * V10_DIM_N * 2 + V10_DIM_N * V10_DIM_N;
unsigned nbBlock = (dim + V10_DIM_N*2 - 1) / (V10_DIM_N*2);
if (nbBlock<=V10_NB_PROC) {
dim3 threads(V10_DIM_N,V10_DIM_N);
dim3 grid(1,nbBlock);
CudaLCP_FullKernel_V10_kernel<float,V10_DIM_N><<< grid, threads, alloc * sizeof(float)>>>(dim,itMax*nbBlock*2*V10_DIM_N,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
} else {
myprintf("Utilisation de la version 8 car il y a trop de multiprocesseurs utilisés (max = %d , dim = %d)\n",V10_NB_PROC,nbBlock);
//CudaLCP_FullKernel_V8f(dim,itMax,tol,m,mP,q,f,err,share);
}
}
void CudaLCP_FullKernel_V10d(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
}
void CudaLCP_FullKernel_V11f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
dim3 threads(V11_BSIZE,V11_BSIZE);
dim3 grid(1,V11_NBPROC);
int dim_n = (dim+V11_BSIZE-1)/V11_BSIZE * V11_BSIZE;
CudaLCP_FullKernel_V11_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
}
void CudaLCP_FullKernel_V11d(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(V11_BSIZE,V11_BSIZE);
dim3 grid(1,V11_NBPROC);
int dim_n = (dim+V11_BSIZE-1)/V11_BSIZE * V11_BSIZE;
CudaLCP_FullKernel_V11_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,(double)tol,(const double *) m,mP,(const double *) q,(double *) f,(double *) err,(int *) share);
#endif
}
void CudaLCP_FullKernel_V12f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
dim3 threads(V12_BSIZE,V12_BSIZE);
dim3 grid(1,V12_NBPROC);
int dim_n = (dim+V12_BSIZE-1)/V12_BSIZE * V12_BSIZE;
CudaLCP_FullKernel_V12_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
}
void CudaLCP_FullKernel_V12d(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(V12_BSIZE,V12_BSIZE);
dim3 grid(1,V12_NBPROC);
int dim_n = (dim+V12_BSIZE-1)/V12_BSIZE * V12_BSIZE;
CudaLCP_FullKernel_V12_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,(double)tol,(const double *) m,mP,(const double *) q,(double *) f,(double *) err,(int *) share);
#endif
}
void CudaLCP_FullKernel_V13f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
dim3 threads(V13_BSIZE,V13_BSIZE);
dim3 grid(1,V13_NBPROC);
int dim_n = (dim+V13_BSIZE-1)/V13_BSIZE * V13_BSIZE;
CudaLCP_FullKernel_V13_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
}
void CudaLCP_FullKernel_V13d(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(V13_BSIZE,V13_BSIZE);
dim3 grid(1,V13_NBPROC);
int dim_n = (dim+V13_BSIZE-1)/V13_BSIZE * V13_BSIZE;
CudaLCP_FullKernel_V13_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,(double)tol,(const double *) m,mP,(const double *) q,(double *) f,(double *) err,(int *) share);
#endif
}
//////////////////////////////////////////////nlcp
/*
for (int i=0;i<numContacts;i++) {
int index0 = 3*i;
int index1 = index0+1;
int index2 = index0+2;
cuda_res[index0] = cuda_q[index0];
cuda_res[index1] = cuda_q[index1];
cuda_res[index2] = cuda_q[index2];
for (int j=index2+1;j<dim;j++) {
cuda_res[index0] += cuda_M[j][index0] * cuda_f[j];
cuda_res[index1] += cuda_M[j][index1] * cuda_f[j];
cuda_res[index2] += cuda_M[j][index2] * cuda_f[j];
}
}
*/
void CudaNLCP_MultIndepf(int dim,const void * m,int pM,const void * f,void * tmp,int pTmp) {
dim3 threads(MBSIZE,1);
dim3 grid((dim+MBSIZE-1)/MBSIZE,dim);
CudaNLCP_MultIndep_kernel<float><<< grid, threads,0>>>(dim, (const float*)m,pM,(const float*)f,(float*)tmp,pTmp);
}
void CudaNLCP_MultIndepd(int dim,const void * m,int pM,const void * f,void * tmp,int pTmp) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(MBSIZE,1);
dim3 grid((dim+MBSIZE-1)/MBSIZE,dim);
CudaNLCP_MultIndep_kernel<double><<< grid, threads,0>>>(dim, (const double*)m,pM,(const double*)f,(double*)tmp,pTmp);
#endif
}
void CudaNLCP_AddIndepf(int dim,int tmpsize,const void * q,const void * tmp,int pTmp,void * res) {
dim3 threads(tmpsize,1);
dim3 grid(dim,1);
CudaNLCP_AddIndep_kernel<float><<< grid, threads,threads.x*sizeof(float)>>>(dim,tmpsize,(const float*)q,(const float*)tmp,pTmp,(float*)res);
}
void CudaNLCP_AddIndepd(int dim,int tmpsize,const void * q,const void * tmp,int pTmp,void * res) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(tmpsize,1);
dim3 grid(dim,1);
CudaNLCP_AddIndep_kernel<double><<< grid, threads,threads.x*sizeof(double)>>>(dim,tmpsize,(const double*)q,(const double*)tmp,pTmp,(double*)res);
#endif
}
void CudaNLCP_ComputeNextIter_V1_InDepKernelf(int dim,int d,int debutBlock,const void * m,int mP,const void * f,void * res) {
dim3 threads(MBSIZE,1);
dim3 grid(1,dim-d);
CudaNLCP_ComputeNextIter_V1_InDepKernel_kernel<float><<< grid, threads,0>>>(dim,debutBlock,(const float*) m,mP,(const float*)f, (float *)res);
}
void CudaNLCP_ComputeNextIter_V1_InDepKerneld(int dim,int d,int debutBlock,const void * m,int mP,const void * f,void * res) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(MBSIZE,1);
dim3 grid(1,dim-d);
CudaNLCP_ComputeNextIter_V1_InDepKernel_kernel<double><<< grid, threads,0>>>(dim,debutBlock,(const double*) m,mP,(const double*)f, (double *)res);
#endif
}
void CudaNLCP_ComputeNextIter_V1_DepKernelf(int d,int debutblock,float mu,const void * m,int mP,const void * q,void * f,void * err,void * res) {
dim3 threads(MBSIZE,1);
dim3 grid(1,1);
CudaNLCP_ComputeNextIter_V1_DepKernel_kernel<float><<< grid, threads,0>>>(d,debutblock,mu,(const float*) m,mP,(const float *) q,(float*)f, (float*) err,(float *)res);
}
void CudaNLCP_ComputeNextIter_V1_DepKerneld(int d,int debutblock,float mu,const void * m,int mP,const void * q,void * f,void * err,void * res) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(MBSIZE,1);
dim3 grid(1,1);
CudaNLCP_ComputeNextIter_V1_DepKernel_kernel<double><<< grid, threads,0>>>(d,debutblock,(double)mu,(const double*) m,mP,(const double *) q,(double*)f, (double*) err,(double *)res);
#endif
}
void CudaNLCP_FullKernel_V2f(int dim,int itMax,float tol,float mu,const void * m,int mP,const void * q,void * f,void * err,void * share) {
dim3 threads(MBSIZE_C,MBSIZE_C);
dim3 grid(1,NB_MULTIPROC);
int dim_n = (dim+MBSIZE_C-1)/MBSIZE_C * MBSIZE_C;
CudaNLCP_FullKernel_V2_kernel<float><<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,tol,mu,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
}
void CudaNLCP_FullKernel_V2d(int dim,int itMax,float tol,float mu,const void * m,int mP,const void * q,void * f,void * err,void * share) {
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 130
myprintf("CUDA ERROR: double precision not supported.\n");
#else
dim3 threads(MBSIZE_C,MBSIZE_C);
dim3 grid(1,NB_MULTIPROC);
int dim_n = (dim+MBSIZE_C-1)/MBSIZE_C * MBSIZE_C;
CudaNLCP_FullKernel_V2_kernel<double><<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,tol,mu,(const double *) m,mP,(const double *) q,(double *) f,(double *) err,(int *) share);
#endif
}
|