This file is indexed.

/usr/include/sphinxbase/ngram_model.h is in libsphinxbase-dev 0.4.1-0ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
/* -*- c-basic-offset: 4; indent-tabs-mode: nil -*- */
/* ====================================================================
 * Copyright (c) 2007 Carnegie Mellon University.  All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer. 
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * This work was supported in part by funding from the Defense Advanced 
 * Research Projects Agency and the National Science Foundation of the 
 * United States of America, and the CMU Sphinx Speech Consortium.
 *
 * THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND 
 * ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY
 * NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * ====================================================================
 *
 */
/**
 * @file ngram_model.h
 * @brief N-Gram language models
 * @author David Huggins-Daines <dhuggins@cs.cmu.edu>
 */

#ifndef __NGRAM_MODEL_H__
#define __NGRAM_MODEL_H__

/* Win32/WinCE DLL gunk */
#include <sphinxbase_export.h>
#include <prim_type.h>
#include <cmd_ln.h>
#include <logmath.h>
#include <mmio.h>
#include <stdarg.h>

#ifdef __cplusplus
extern "C" {
#endif
#if 0
/* Fool Emacs. */
}
#endif

/**
 * Abstract type representing an N-Gram based language model.
 */
typedef struct ngram_model_s ngram_model_t;

/**
 * Abstract type representing a word class in an N-Gram model.
 */
typedef struct ngram_class_s ngram_class_t;

/**
 * File types for N-Gram files
 */
typedef enum ngram_file_type_e {
    NGRAM_AUTO,  /**< Determine file type automatically */
    NGRAM_ARPA,  /**< ARPABO text format (the standard) */
    NGRAM_DMP,   /**< Sphinx .DMP format */
    NGRAM_DMP32  /**< Sphinx .DMP32 format */
} ngram_file_type_t;

#define NGRAM_INVALID_WID -1 /**< Impossible word ID */

/**
 * Read an N-Gram model from a file on disk.
 *
 * @param config Optional pointer to a set of command-line arguments.
 * Recognized arguments are:
 *
 *  - -mmap (boolean) whether to use memory-mapped I/O
 *  - -lw (float32) language weight to apply to the model
 *  - -wip (float32) word insertion penalty to apply to the model
 *  - -uw (float32) unigram weight to apply to the model
 *
 * @param file_name path to the file to read.
 * @param file_type type of the file, or NGRAM_AUTO to determine automatically.
 * @param lmath Log-math parameters to use for probability
 *              calculations.  Ownership of this object is assumed by
 *              the newly created ngram_model_t, and you should not
 *              attempt to free it manually.  If you wish to reuse it
 *              elsewhere, you must retain it with logmath_retain().
 * @return newly created ngram_model_t.
 */
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_read(cmd_ln_t *config,
				const char *file_name,
                                ngram_file_type_t file_type,
				logmath_t *lmath);

/**
 * Write an N-Gram model to disk.
 *
 * @note This is not yet implemented.
 *
 * @return 0 for success, <0 on error
 */
SPHINXBASE_EXPORT
int ngram_model_write(ngram_model_t *model, const char *file_name,
		      ngram_file_type_t format);

/**
 * Retain ownership of an N-Gram model.
 *
 * @return Pointer to retained model.
 */
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_retain(ngram_model_t *model);

/**
 * Release memory associated with an N-Gram model.
 *
 * @return new reference count (0 if freed completely)
 */
SPHINXBASE_EXPORT
int ngram_model_free(ngram_model_t *model);

/**
 * Re-encode word strings in an N-Gram model.
 *
 * Character set names are the same as those passed to iconv(1).  If
 * your system does not have iconv, this function may fail.  Also,
 * because all file formats consist of 8-bit character streams,
 * attempting to convert to or from UTF-16 (or any other encoding
 * which contains null bytes) is a recipe for total desaster.
 *
 * We have no interest in supporting UTF-16, so don't ask.
 *
 * Note that this does not affect any pronunciation dictionary you
 * might currently be using in conjunction with this N-Gram model, so
 * the effect of calling this during decoding is undefined.  That's a
 * bug!
 */
SPHINXBASE_EXPORT
int ngram_model_recode(ngram_model_t *model, const char *from, const char *to);

/**
 * Apply a language weight, insertion penalty, and unigram weight to a
 * language model.
 *
 * This will change the values output by ngram_score() and friends.
 * This is done for efficiency since in decoding, these are the only
 * values we actually need.  Call ngram_prob() if you want the "raw"
 * N-Gram probability estimate.
 *
 * To remove all weighting, call ngram_apply_weights(model, 1.0, 1.0, 1.0).
 */
SPHINXBASE_EXPORT
int ngram_model_apply_weights(ngram_model_t *model,
                              float32 lw, float32 wip, float32 uw);

/**
 * Get the current weights from a language model.
 *
 * @param model The model in question.
 * @param out_log_wip Output: (optional) logarithm of word insertion penalty.
 * @param out_log_uw Output: (optional) logarithm of unigram weight.
 * @return language weight.
 */
SPHINXBASE_EXPORT
float32 ngram_model_get_weights(ngram_model_t *model, int32 *out_log_wip,
                                int32 *out_log_uw);

/**
 * Get the score (scaled, interpolated log-probability) for a general
 * N-Gram.
 *
 * The argument list consists of the history words (as null-terminated
 * strings) of the N-Gram, <b>in reverse order</b>, followed by NULL.
 * Therefore, if you wanted to get the N-Gram score for "a whole joy",
 * you would call:
 *
 * <pre>
 *  score = ngram_score(model, "joy", "whole", "a", NULL);
 * </pre>
 *
 * This is not the function to use in decoding, because it has some
 * overhead for looking up words.  Use ngram_ng_score(),
 * ngram_tg_score(), or ngram_bg_score() instead.  In the future there
 * will probably be a version that takes a general language model
 * state object, to support suffix-array LM and things like that.
 *
 * If one of the words is not in the LM's vocabulary, the result will
 * depend on whether this is an open or closed vocabulary language
 * model.  For an open-vocabulary model, unknown words are all mapped
 * to the unigram &lt;UNK&gt; which has a non-zero probability and also
 * participates in higher-order N-Grams.  Therefore, you will get a
 * score of some sort in this case.
 *
 * For a closed-vocabulary model, unknown words are impossible and
 * thus have zero probability.  Therefore, if <code>word</code> is
 * unknown, this function will return a "zero" log-probability, i.e. a
 * large negative number.  To obtain this number for comparison, call
 * ngram_zero().
 */
SPHINXBASE_EXPORT
int32 ngram_score(ngram_model_t *model, const char *word, ...);

/**
 * Quick trigram score lookup.
 */
SPHINXBASE_EXPORT
int32 ngram_tg_score(ngram_model_t *model,
                     int32 w3, int32 w2, int32 w1,
                     int32 *n_used);

/**
 * Quick bigram score lookup.
 */
SPHINXBASE_EXPORT
int32 ngram_bg_score(ngram_model_t *model,
                     int32 w2, int32 w1,
                     int32 *n_used);

/**
 * Quick general N-Gram score lookup.
 */
SPHINXBASE_EXPORT
int32 ngram_ng_score(ngram_model_t *model, int32 wid, int32 *history,
                     int32 n_hist, int32 *n_used);

/**
 * Get the "raw" log-probability for a general N-Gram.
 *
 * This returns the log-probability of an N-Gram, as defined in the
 * language model file, before any language weighting, interpolation,
 * or insertion penalty has been applied.
 *
 * @note When backing off to a unigram from a bigram or trigram, the
 * unigram weight (interpolation with uniform) is not removed.
 */
SPHINXBASE_EXPORT
int32 ngram_prob(ngram_model_t *model, const char *word, ...);

/**
 * Quick "raw" probability lookup for a general N-Gram.
 *
 * See documentation for ngram_ng_score() and ngram_apply_weights()
 * for an explanation of this.
 */
SPHINXBASE_EXPORT
int32 ngram_ng_prob(ngram_model_t *model, int32 wid, int32 *history,
                    int32 n_hist, int32 *n_used);

/**
 * Convert score to "raw" log-probability.
 *
 * @note The unigram weight (interpolation with uniform) is not
 * removed, since there is no way to know which order of N-Gram
 * generated <code>score</code>.
 * 
 * @param model The N-Gram model from which score was obtained.
 * @param score The N-Gram score to convert
 * @return The raw log-probability value.
 */
SPHINXBASE_EXPORT
int32 ngram_score_to_prob(ngram_model_t *model, int32 score);

/**
 * Look up numerical word ID.
 */
SPHINXBASE_EXPORT
int32 ngram_wid(ngram_model_t *model, const char *word);

/**
 * Look up word string for numerical word ID.
 */
SPHINXBASE_EXPORT
const char *ngram_word(ngram_model_t *model, int32 wid);

/**
 * Get the unknown word ID for a language model.
 *
 * Language models can be either "open vocabulary" or "closed
 * vocabulary".  The difference is that the former assigns a fixed
 * non-zero unigram probability to unknown words, while the latter
 * does not allow unknown words (or, equivalently, it assigns them
 * zero probability).  If this is a closed vocabulary model, this
 * function will return NGRAM_INVALID_WID.
 *
 * @return The ID for the unknown word, or NGRAM_INVALID_WID if none
 * exists.
 */
SPHINXBASE_EXPORT
int32 ngram_unknown_wid(ngram_model_t *model);

/**
 * Get the "zero" log-probability value for a language model.
 */
SPHINXBASE_EXPORT
int32 ngram_zero(ngram_model_t *model);

/**
 * Get the order of the N-gram model (i.e. the "N" in "N-gram")
 */
SPHINXBASE_EXPORT
int32 ngram_model_get_size(ngram_model_t *model);

/**
 * Get the counts of the various N-grams in the model
 */
SPHINXBASE_EXPORT
int32 const *ngram_model_get_counts(ngram_model_t *model);


/**
 * Add a word (unigram) to the language model.
 *
 * @note The semantics of this are not particularly well-defined for
 * model sets, and may be subject to change.  Currently this will add
 * the word to all of the submodels
 *
 * @param model The model to add a word to.
 * @param word Text of the word to add.
 * @param weight Weight of this word relative to the uniform distribution.
 * @return The word ID for the new word.
 */
SPHINXBASE_EXPORT
int32 ngram_model_add_word(ngram_model_t *model,
                           const char *word, float32 weight);

/**
 * Read a class definition file and add classes to a language model.
 *
 * This function assumes that the class tags have already been defined
 * as unigrams in the language model.  All words in the class
 * definition will be added to the lexicon as special in-class words.
 * For this reason is is necessary that they not have the same names
 * as any words in the general unigram distribution.  The convention
 * is to suffix them with ":class_tag", where class_tag is the class
 * tag minus the enclosing square brackets.
 *
 * @return 0 for success, <0 for error
 */
SPHINXBASE_EXPORT
int32 ngram_model_read_classdef(ngram_model_t *model,
                                const char *file_name);

/**
 * Add a new class to a language model.
 *
 * If <code>classname</code> already exists in the unigram set for
 * <code>model</code>, then it will be converted to a class tag, and
 * <code>classweight</code> will be ignored.  Otherwise, a new unigram
 * will be created as in ngram_model_add_word().
 */
SPHINXBASE_EXPORT
int32 ngram_model_add_class(ngram_model_t *model,
                            const char *classname,
                            float32 classweight,
                            char **words,
                            const float32 *weights,
                            int32 n_words);

/**
 * Add a word to a class in a language model.
 *
 * @param model The model to add a word to.
 * @param classname Name of the class to add this word to.
 * @param word Text of the word to add.
 * @param weight Weight of this word relative to the within-class uniform distribution.
 * @return The word ID for the new word.
 */
SPHINXBASE_EXPORT
int32 ngram_model_add_class_word(ngram_model_t *model,
                                 const char *classname,
                                 const char *word,
                                 float32 weight);

/**
 * Create a set of language models sharing a common space of word IDs.
 *
 * This function creates a meta-language model which groups together a
 * set of language models, synchronizing word IDs between them.  To
 * use this language model, you can either select a submodel to use
 * exclusively using ngram_model_set_select(), or interpolate
 * between scores from all models.  To do the latter, you can either
 * pass a non-NULL value of the <code>weights</code> parameter, or
 * re-activate interpolation later on by calling
 * ngram_model_set_interp().
 *
 * In order to make this efficient, there are some restrictions on the
 * models that can be grouped together.  The most important (and
 * currently the only) one is that they <strong>must</strong> all
 * share the same log-math parameters.
 *
 * @param config Any configuration parameters to be shared between models.
 * @param models Array of pointers to previously created language models.
 * @param names Array of strings to use as unique identifiers for LMs.
 * @param weights Array of weights to use in interpolating LMs, or NULL
 *                for no interpolation.
 * @param n_models Number of elements in the arrays passed to this function.
 */
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_init(cmd_ln_t *config,
                                    ngram_model_t **models,
                                    char **names,
                                    const float32 *weights,
                                    int32 n_models);

/**
 * Read a set of language models from a control file.
 *
 * This file creates a language model set from a "control file" of
 * the type used in Sphinx-II and Sphinx-III.
 * File format (optional stuff is indicated by enclosing in []):
 * 
 * <pre>
 *   [{ LMClassFileName LMClassFilename ... }]
 *   TrigramLMFileName LMName [{ LMClassName LMClassName ... }]
 *   TrigramLMFileName LMName [{ LMClassName LMClassName ... }]
 *   ...
 * (There should be whitespace around the { and } delimiters.)
 * </pre>
 * 
 * This is an extension of the older format that had only TrigramLMFilenName
 * and LMName pairs.  The new format allows a set of LMClass files to be read
 * in and referred to by the trigram LMs.
 * 
 * No "comments" allowed in this file.
 *
 * @param config Configuration parameters.
 * @param lmctlfile Path to the language model control file.
 * @param lmath Log-math parameters to use for probability
 *              calculations.  Ownership of this object is assumed by
 *              the newly created ngram_model_t, and you should not
 *              attempt to free it manually.  If you wish to reuse it
 *              elsewhere, you must retain it with logmath_retain().
 * @return newly created language model set.
 */
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_read(cmd_ln_t *config,
                                    const char *lmctlfile,
                                    logmath_t *lmath);

/**
 * Returns the number of language models in a set.
 */
SPHINXBASE_EXPORT
int32 ngram_model_set_count(ngram_model_t *set);

/**
 * Iterator over language models in a set.
 */
typedef struct ngram_model_set_iter_s ngram_model_set_iter_t;

/**
 * Begin iterating over language models in a set.
 *
 * @return iterator pointing to the first language model, or NULL if no models remain.
 */
SPHINXBASE_EXPORT
ngram_model_set_iter_t *ngram_model_set_iter(ngram_model_t *set);

/**
 * Move to the next language model in a set.
 *
 * @return iterator pointing to the next language model, or NULL if no models remain.
 */
SPHINXBASE_EXPORT
ngram_model_set_iter_t *ngram_model_set_iter_next(ngram_model_set_iter_t *itor);

/**
 * Finish iteration over a langauge model set.
 */
void ngram_model_set_iter_free(ngram_model_set_iter_t *itor);

/**
 * Get language model and associated name from an iterator.
 *
 * @param itor the iterator
 * @param lmname Output: string name associated with this language model.
 * @return Language model pointed to by this iterator.
 */
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_iter_model(ngram_model_set_iter_t *itor,
                                          char const **lmname);

/**
 * Select a single language model from a set for scoring.
 *
 * @return the newly selected language model, or NULL if no language
 * model by that name exists.
 */
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_select(ngram_model_t *set,
                                      const char *name);

/**
 * Look up a language model by name from a set.
 *
 * @return language model corresponding to <code>name</code>, or NULL
 * if no language model by that name exists.
 */
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_lookup(ngram_model_t *set,
                                      const char *name);

/**
 * Get the current language model name, if any.
 */
SPHINXBASE_EXPORT
const char *ngram_model_set_current(ngram_model_t *set);

/**
 * Set interpolation weights for a set and enables interpolation.
 *
 * If <code>weights</code> is NULL, any previously initialized set of
 * weights will be used.  If no weights were specified to
 * ngram_model_set_init(), then a uniform distribution will be used.
 */
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_interp(ngram_model_t *set,
                                      const char **names,
                                      const float32 *weights);

/**
 * Add a language model to a set.
 *
 * @param set The language model set to add to.
 * @param model The language model to add.
 * @param name The name to associate with this model.
 * @param weight Interpolation weight for this model, relative to the
 *               uniform distribution.  1.0 is a safe value.
 * @param reuse_widmap Reuse the existing word-ID mapping in
 * <code>set</code>.  Any new words present in <code>model</code>
 * will not be added to the word-ID mapping in this case.
 */
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_add(ngram_model_t *set,
                                   ngram_model_t *model,
                                   const char *name,
                                   float32 weight,
                                   int reuse_widmap);

/**
 * Remove a language model from a set.
 *
 * @param set The language model set to remove from.
 * @param name The name associated with the model to remove.
 * @param reuse_widmap Reuse the existing word-ID mapping in
 *                     <code>set</code>.
 */
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_remove(ngram_model_t *set,
                                      const char *name,
                                      int reuse_widmap);

/**
 * Set the word-to-ID mapping for this model set.
 */
SPHINXBASE_EXPORT
void ngram_model_set_map_words(ngram_model_t *set,
                               const char **words,
                               int32 n_words);

/**
 * Query the word-ID mapping for the current language model.
 *
 * @return the local word ID in the current language model, or
 * NGRAM_INVALID_WID if <code>set_wid</code> is invalid or
 * interpolation is enabled.
 */
SPHINXBASE_EXPORT
int32 ngram_model_set_current_wid(ngram_model_t *set,
                                  int32 set_wid);

/**
 * Test whether a word ID corresponds to a known word in the current
 * state of the language model set.
 *
 * @return If there is a current language model, returns non-zero if
 * <code>set_wid</code> corresponds to a known word in that language
 * model.  Otherwise, returns non-zero if <code>set_wid</code>
 * corresponds to a known word in any language model.
 */
SPHINXBASE_EXPORT
int32 ngram_model_set_known_wid(ngram_model_t *set, int32 set_wid);

/**
 * Flush any cached N-Gram information 
 *
 * Some types of models cache trigram or other N-Gram information to
 * speed repeated access to N-Grams with shared histories.  This
 * function flushes the cache so as to avoid dynamic memory leaks.
 */
SPHINXBASE_EXPORT
void ngram_model_flush(ngram_model_t *lm);

#ifdef __cplusplus
}
#endif


#endif /* __NGRAM_MODEL_H__ */