/usr/include/sphinxbase/ngram_model.h is in libsphinxbase-dev 0.4.1-0ubuntu4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 | /* -*- c-basic-offset: 4; indent-tabs-mode: nil -*- */
/* ====================================================================
* Copyright (c) 2007 Carnegie Mellon University. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* This work was supported in part by funding from the Defense Advanced
* Research Projects Agency and the National Science Foundation of the
* United States of America, and the CMU Sphinx Speech Consortium.
*
* THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND
* ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY
* NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ====================================================================
*
*/
/**
* @file ngram_model.h
* @brief N-Gram language models
* @author David Huggins-Daines <dhuggins@cs.cmu.edu>
*/
#ifndef __NGRAM_MODEL_H__
#define __NGRAM_MODEL_H__
/* Win32/WinCE DLL gunk */
#include <sphinxbase_export.h>
#include <prim_type.h>
#include <cmd_ln.h>
#include <logmath.h>
#include <mmio.h>
#include <stdarg.h>
#ifdef __cplusplus
extern "C" {
#endif
#if 0
/* Fool Emacs. */
}
#endif
/**
* Abstract type representing an N-Gram based language model.
*/
typedef struct ngram_model_s ngram_model_t;
/**
* Abstract type representing a word class in an N-Gram model.
*/
typedef struct ngram_class_s ngram_class_t;
/**
* File types for N-Gram files
*/
typedef enum ngram_file_type_e {
NGRAM_AUTO, /**< Determine file type automatically */
NGRAM_ARPA, /**< ARPABO text format (the standard) */
NGRAM_DMP, /**< Sphinx .DMP format */
NGRAM_DMP32 /**< Sphinx .DMP32 format */
} ngram_file_type_t;
#define NGRAM_INVALID_WID -1 /**< Impossible word ID */
/**
* Read an N-Gram model from a file on disk.
*
* @param config Optional pointer to a set of command-line arguments.
* Recognized arguments are:
*
* - -mmap (boolean) whether to use memory-mapped I/O
* - -lw (float32) language weight to apply to the model
* - -wip (float32) word insertion penalty to apply to the model
* - -uw (float32) unigram weight to apply to the model
*
* @param file_name path to the file to read.
* @param file_type type of the file, or NGRAM_AUTO to determine automatically.
* @param lmath Log-math parameters to use for probability
* calculations. Ownership of this object is assumed by
* the newly created ngram_model_t, and you should not
* attempt to free it manually. If you wish to reuse it
* elsewhere, you must retain it with logmath_retain().
* @return newly created ngram_model_t.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_read(cmd_ln_t *config,
const char *file_name,
ngram_file_type_t file_type,
logmath_t *lmath);
/**
* Write an N-Gram model to disk.
*
* @note This is not yet implemented.
*
* @return 0 for success, <0 on error
*/
SPHINXBASE_EXPORT
int ngram_model_write(ngram_model_t *model, const char *file_name,
ngram_file_type_t format);
/**
* Retain ownership of an N-Gram model.
*
* @return Pointer to retained model.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_retain(ngram_model_t *model);
/**
* Release memory associated with an N-Gram model.
*
* @return new reference count (0 if freed completely)
*/
SPHINXBASE_EXPORT
int ngram_model_free(ngram_model_t *model);
/**
* Re-encode word strings in an N-Gram model.
*
* Character set names are the same as those passed to iconv(1). If
* your system does not have iconv, this function may fail. Also,
* because all file formats consist of 8-bit character streams,
* attempting to convert to or from UTF-16 (or any other encoding
* which contains null bytes) is a recipe for total desaster.
*
* We have no interest in supporting UTF-16, so don't ask.
*
* Note that this does not affect any pronunciation dictionary you
* might currently be using in conjunction with this N-Gram model, so
* the effect of calling this during decoding is undefined. That's a
* bug!
*/
SPHINXBASE_EXPORT
int ngram_model_recode(ngram_model_t *model, const char *from, const char *to);
/**
* Apply a language weight, insertion penalty, and unigram weight to a
* language model.
*
* This will change the values output by ngram_score() and friends.
* This is done for efficiency since in decoding, these are the only
* values we actually need. Call ngram_prob() if you want the "raw"
* N-Gram probability estimate.
*
* To remove all weighting, call ngram_apply_weights(model, 1.0, 1.0, 1.0).
*/
SPHINXBASE_EXPORT
int ngram_model_apply_weights(ngram_model_t *model,
float32 lw, float32 wip, float32 uw);
/**
* Get the current weights from a language model.
*
* @param model The model in question.
* @param out_log_wip Output: (optional) logarithm of word insertion penalty.
* @param out_log_uw Output: (optional) logarithm of unigram weight.
* @return language weight.
*/
SPHINXBASE_EXPORT
float32 ngram_model_get_weights(ngram_model_t *model, int32 *out_log_wip,
int32 *out_log_uw);
/**
* Get the score (scaled, interpolated log-probability) for a general
* N-Gram.
*
* The argument list consists of the history words (as null-terminated
* strings) of the N-Gram, <b>in reverse order</b>, followed by NULL.
* Therefore, if you wanted to get the N-Gram score for "a whole joy",
* you would call:
*
* <pre>
* score = ngram_score(model, "joy", "whole", "a", NULL);
* </pre>
*
* This is not the function to use in decoding, because it has some
* overhead for looking up words. Use ngram_ng_score(),
* ngram_tg_score(), or ngram_bg_score() instead. In the future there
* will probably be a version that takes a general language model
* state object, to support suffix-array LM and things like that.
*
* If one of the words is not in the LM's vocabulary, the result will
* depend on whether this is an open or closed vocabulary language
* model. For an open-vocabulary model, unknown words are all mapped
* to the unigram <UNK> which has a non-zero probability and also
* participates in higher-order N-Grams. Therefore, you will get a
* score of some sort in this case.
*
* For a closed-vocabulary model, unknown words are impossible and
* thus have zero probability. Therefore, if <code>word</code> is
* unknown, this function will return a "zero" log-probability, i.e. a
* large negative number. To obtain this number for comparison, call
* ngram_zero().
*/
SPHINXBASE_EXPORT
int32 ngram_score(ngram_model_t *model, const char *word, ...);
/**
* Quick trigram score lookup.
*/
SPHINXBASE_EXPORT
int32 ngram_tg_score(ngram_model_t *model,
int32 w3, int32 w2, int32 w1,
int32 *n_used);
/**
* Quick bigram score lookup.
*/
SPHINXBASE_EXPORT
int32 ngram_bg_score(ngram_model_t *model,
int32 w2, int32 w1,
int32 *n_used);
/**
* Quick general N-Gram score lookup.
*/
SPHINXBASE_EXPORT
int32 ngram_ng_score(ngram_model_t *model, int32 wid, int32 *history,
int32 n_hist, int32 *n_used);
/**
* Get the "raw" log-probability for a general N-Gram.
*
* This returns the log-probability of an N-Gram, as defined in the
* language model file, before any language weighting, interpolation,
* or insertion penalty has been applied.
*
* @note When backing off to a unigram from a bigram or trigram, the
* unigram weight (interpolation with uniform) is not removed.
*/
SPHINXBASE_EXPORT
int32 ngram_prob(ngram_model_t *model, const char *word, ...);
/**
* Quick "raw" probability lookup for a general N-Gram.
*
* See documentation for ngram_ng_score() and ngram_apply_weights()
* for an explanation of this.
*/
SPHINXBASE_EXPORT
int32 ngram_ng_prob(ngram_model_t *model, int32 wid, int32 *history,
int32 n_hist, int32 *n_used);
/**
* Convert score to "raw" log-probability.
*
* @note The unigram weight (interpolation with uniform) is not
* removed, since there is no way to know which order of N-Gram
* generated <code>score</code>.
*
* @param model The N-Gram model from which score was obtained.
* @param score The N-Gram score to convert
* @return The raw log-probability value.
*/
SPHINXBASE_EXPORT
int32 ngram_score_to_prob(ngram_model_t *model, int32 score);
/**
* Look up numerical word ID.
*/
SPHINXBASE_EXPORT
int32 ngram_wid(ngram_model_t *model, const char *word);
/**
* Look up word string for numerical word ID.
*/
SPHINXBASE_EXPORT
const char *ngram_word(ngram_model_t *model, int32 wid);
/**
* Get the unknown word ID for a language model.
*
* Language models can be either "open vocabulary" or "closed
* vocabulary". The difference is that the former assigns a fixed
* non-zero unigram probability to unknown words, while the latter
* does not allow unknown words (or, equivalently, it assigns them
* zero probability). If this is a closed vocabulary model, this
* function will return NGRAM_INVALID_WID.
*
* @return The ID for the unknown word, or NGRAM_INVALID_WID if none
* exists.
*/
SPHINXBASE_EXPORT
int32 ngram_unknown_wid(ngram_model_t *model);
/**
* Get the "zero" log-probability value for a language model.
*/
SPHINXBASE_EXPORT
int32 ngram_zero(ngram_model_t *model);
/**
* Get the order of the N-gram model (i.e. the "N" in "N-gram")
*/
SPHINXBASE_EXPORT
int32 ngram_model_get_size(ngram_model_t *model);
/**
* Get the counts of the various N-grams in the model
*/
SPHINXBASE_EXPORT
int32 const *ngram_model_get_counts(ngram_model_t *model);
/**
* Add a word (unigram) to the language model.
*
* @note The semantics of this are not particularly well-defined for
* model sets, and may be subject to change. Currently this will add
* the word to all of the submodels
*
* @param model The model to add a word to.
* @param word Text of the word to add.
* @param weight Weight of this word relative to the uniform distribution.
* @return The word ID for the new word.
*/
SPHINXBASE_EXPORT
int32 ngram_model_add_word(ngram_model_t *model,
const char *word, float32 weight);
/**
* Read a class definition file and add classes to a language model.
*
* This function assumes that the class tags have already been defined
* as unigrams in the language model. All words in the class
* definition will be added to the lexicon as special in-class words.
* For this reason is is necessary that they not have the same names
* as any words in the general unigram distribution. The convention
* is to suffix them with ":class_tag", where class_tag is the class
* tag minus the enclosing square brackets.
*
* @return 0 for success, <0 for error
*/
SPHINXBASE_EXPORT
int32 ngram_model_read_classdef(ngram_model_t *model,
const char *file_name);
/**
* Add a new class to a language model.
*
* If <code>classname</code> already exists in the unigram set for
* <code>model</code>, then it will be converted to a class tag, and
* <code>classweight</code> will be ignored. Otherwise, a new unigram
* will be created as in ngram_model_add_word().
*/
SPHINXBASE_EXPORT
int32 ngram_model_add_class(ngram_model_t *model,
const char *classname,
float32 classweight,
char **words,
const float32 *weights,
int32 n_words);
/**
* Add a word to a class in a language model.
*
* @param model The model to add a word to.
* @param classname Name of the class to add this word to.
* @param word Text of the word to add.
* @param weight Weight of this word relative to the within-class uniform distribution.
* @return The word ID for the new word.
*/
SPHINXBASE_EXPORT
int32 ngram_model_add_class_word(ngram_model_t *model,
const char *classname,
const char *word,
float32 weight);
/**
* Create a set of language models sharing a common space of word IDs.
*
* This function creates a meta-language model which groups together a
* set of language models, synchronizing word IDs between them. To
* use this language model, you can either select a submodel to use
* exclusively using ngram_model_set_select(), or interpolate
* between scores from all models. To do the latter, you can either
* pass a non-NULL value of the <code>weights</code> parameter, or
* re-activate interpolation later on by calling
* ngram_model_set_interp().
*
* In order to make this efficient, there are some restrictions on the
* models that can be grouped together. The most important (and
* currently the only) one is that they <strong>must</strong> all
* share the same log-math parameters.
*
* @param config Any configuration parameters to be shared between models.
* @param models Array of pointers to previously created language models.
* @param names Array of strings to use as unique identifiers for LMs.
* @param weights Array of weights to use in interpolating LMs, or NULL
* for no interpolation.
* @param n_models Number of elements in the arrays passed to this function.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_init(cmd_ln_t *config,
ngram_model_t **models,
char **names,
const float32 *weights,
int32 n_models);
/**
* Read a set of language models from a control file.
*
* This file creates a language model set from a "control file" of
* the type used in Sphinx-II and Sphinx-III.
* File format (optional stuff is indicated by enclosing in []):
*
* <pre>
* [{ LMClassFileName LMClassFilename ... }]
* TrigramLMFileName LMName [{ LMClassName LMClassName ... }]
* TrigramLMFileName LMName [{ LMClassName LMClassName ... }]
* ...
* (There should be whitespace around the { and } delimiters.)
* </pre>
*
* This is an extension of the older format that had only TrigramLMFilenName
* and LMName pairs. The new format allows a set of LMClass files to be read
* in and referred to by the trigram LMs.
*
* No "comments" allowed in this file.
*
* @param config Configuration parameters.
* @param lmctlfile Path to the language model control file.
* @param lmath Log-math parameters to use for probability
* calculations. Ownership of this object is assumed by
* the newly created ngram_model_t, and you should not
* attempt to free it manually. If you wish to reuse it
* elsewhere, you must retain it with logmath_retain().
* @return newly created language model set.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_read(cmd_ln_t *config,
const char *lmctlfile,
logmath_t *lmath);
/**
* Returns the number of language models in a set.
*/
SPHINXBASE_EXPORT
int32 ngram_model_set_count(ngram_model_t *set);
/**
* Iterator over language models in a set.
*/
typedef struct ngram_model_set_iter_s ngram_model_set_iter_t;
/**
* Begin iterating over language models in a set.
*
* @return iterator pointing to the first language model, or NULL if no models remain.
*/
SPHINXBASE_EXPORT
ngram_model_set_iter_t *ngram_model_set_iter(ngram_model_t *set);
/**
* Move to the next language model in a set.
*
* @return iterator pointing to the next language model, or NULL if no models remain.
*/
SPHINXBASE_EXPORT
ngram_model_set_iter_t *ngram_model_set_iter_next(ngram_model_set_iter_t *itor);
/**
* Finish iteration over a langauge model set.
*/
void ngram_model_set_iter_free(ngram_model_set_iter_t *itor);
/**
* Get language model and associated name from an iterator.
*
* @param itor the iterator
* @param lmname Output: string name associated with this language model.
* @return Language model pointed to by this iterator.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_iter_model(ngram_model_set_iter_t *itor,
char const **lmname);
/**
* Select a single language model from a set for scoring.
*
* @return the newly selected language model, or NULL if no language
* model by that name exists.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_select(ngram_model_t *set,
const char *name);
/**
* Look up a language model by name from a set.
*
* @return language model corresponding to <code>name</code>, or NULL
* if no language model by that name exists.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_lookup(ngram_model_t *set,
const char *name);
/**
* Get the current language model name, if any.
*/
SPHINXBASE_EXPORT
const char *ngram_model_set_current(ngram_model_t *set);
/**
* Set interpolation weights for a set and enables interpolation.
*
* If <code>weights</code> is NULL, any previously initialized set of
* weights will be used. If no weights were specified to
* ngram_model_set_init(), then a uniform distribution will be used.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_interp(ngram_model_t *set,
const char **names,
const float32 *weights);
/**
* Add a language model to a set.
*
* @param set The language model set to add to.
* @param model The language model to add.
* @param name The name to associate with this model.
* @param weight Interpolation weight for this model, relative to the
* uniform distribution. 1.0 is a safe value.
* @param reuse_widmap Reuse the existing word-ID mapping in
* <code>set</code>. Any new words present in <code>model</code>
* will not be added to the word-ID mapping in this case.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_add(ngram_model_t *set,
ngram_model_t *model,
const char *name,
float32 weight,
int reuse_widmap);
/**
* Remove a language model from a set.
*
* @param set The language model set to remove from.
* @param name The name associated with the model to remove.
* @param reuse_widmap Reuse the existing word-ID mapping in
* <code>set</code>.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_remove(ngram_model_t *set,
const char *name,
int reuse_widmap);
/**
* Set the word-to-ID mapping for this model set.
*/
SPHINXBASE_EXPORT
void ngram_model_set_map_words(ngram_model_t *set,
const char **words,
int32 n_words);
/**
* Query the word-ID mapping for the current language model.
*
* @return the local word ID in the current language model, or
* NGRAM_INVALID_WID if <code>set_wid</code> is invalid or
* interpolation is enabled.
*/
SPHINXBASE_EXPORT
int32 ngram_model_set_current_wid(ngram_model_t *set,
int32 set_wid);
/**
* Test whether a word ID corresponds to a known word in the current
* state of the language model set.
*
* @return If there is a current language model, returns non-zero if
* <code>set_wid</code> corresponds to a known word in that language
* model. Otherwise, returns non-zero if <code>set_wid</code>
* corresponds to a known word in any language model.
*/
SPHINXBASE_EXPORT
int32 ngram_model_set_known_wid(ngram_model_t *set, int32 set_wid);
/**
* Flush any cached N-Gram information
*
* Some types of models cache trigram or other N-Gram information to
* speed repeated access to N-Grams with shared histories. This
* function flushes the cache so as to avoid dynamic memory leaks.
*/
SPHINXBASE_EXPORT
void ngram_model_flush(ngram_model_t *lm);
#ifdef __cplusplus
}
#endif
#endif /* __NGRAM_MODEL_H__ */
|