This file is indexed.

/usr/include/stxxl/bits/containers/stack.h is in libstxxl-dev 1.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
/***************************************************************************
 *  include/stxxl/bits/containers/stack.h
 *
 *  Part of the STXXL. See http://stxxl.sourceforge.net
 *
 *  Copyright (C) 2003-2004 Roman Dementiev <dementiev@mpi-sb.mpg.de>
 *  Copyright (C) 2009, 2010 Andreas Beckmann <beckmann@cs.uni-frankfurt.de>
 *
 *  Distributed under the Boost Software License, Version 1.0.
 *  (See accompanying file LICENSE_1_0.txt or copy at
 *  http://www.boost.org/LICENSE_1_0.txt)
 **************************************************************************/

#ifndef STXXL_STACK_HEADER
#define STXXL_STACK_HEADER

#include <stack>
#include <vector>

#include <stxxl/bits/deprecated.h>
#include <stxxl/bits/io/request_operations.h>
#include <stxxl/bits/mng/mng.h>
#include <stxxl/bits/mng/typed_block.h>
#include <stxxl/bits/common/simple_vector.h>
#include <stxxl/bits/common/tmeta.h>
#include <stxxl/bits/mng/read_write_pool.h>
#include <stxxl/bits/mng/write_pool.h>
#include <stxxl/bits/mng/prefetch_pool.h>


__STXXL_BEGIN_NAMESPACE

//! \addtogroup stlcontinternals
//! \{

template <class ValTp,
          unsigned BlocksPerPage = 4,
          unsigned BlkSz = STXXL_DEFAULT_BLOCK_SIZE(ValTp),
          class AllocStr = STXXL_DEFAULT_ALLOC_STRATEGY,
          class SzTp = stxxl::int64>
struct stack_config_generator
{
    typedef ValTp value_type;
    enum { blocks_per_page = BlocksPerPage };
    typedef AllocStr alloc_strategy;
    enum { block_size = BlkSz };
    typedef SzTp size_type;
};


//! \brief External stack container

//! Conservative implementation. Fits best if your access pattern consists of irregularly mixed
//! push'es and pop's.
//! For semantics of the methods see documentation of the STL \c std::stack. <BR>
//! To gain full bandwidth of disks \c Config_::BlocksPerPage must >= number of disks <BR>
//! \internal
template <class Config_>
class normal_stack : private noncopyable
{
public:
    typedef Config_ cfg;
    typedef typename cfg::value_type value_type;
    typedef typename cfg::alloc_strategy alloc_strategy_type;
    typedef typename cfg::size_type size_type;
    enum {
        blocks_per_page = cfg::blocks_per_page,
        block_size = cfg::block_size
    };

    typedef typed_block<block_size, value_type> block_type;
    typedef BID<block_size> bid_type;

private:
    size_type size_;
    unsigned_type cache_offset;
    value_type * current_element;
    simple_vector<block_type> cache;
    typename simple_vector<block_type>::iterator front_page;
    typename simple_vector<block_type>::iterator back_page;
    std::vector<bid_type> bids;
    alloc_strategy_type alloc_strategy;

public:
    normal_stack() :
        size_(0),
        cache_offset(0),
        current_element(NULL),
        cache(blocks_per_page * 2),
        front_page(cache.begin() + blocks_per_page),
        back_page(cache.begin()),
        bids(0)
    {
        bids.reserve(blocks_per_page);
    }

    void swap(normal_stack & obj)
    {
        std::swap(size_, obj.size_);
        std::swap(cache_offset, obj.cache_offset);
        std::swap(current_element, obj.current_element);
        std::swap(cache, obj.cache);
        std::swap(front_page, obj.front_page);
        std::swap(back_page, obj.back_page);
        std::swap(bids, obj.bids);
        std::swap(alloc_strategy, obj.alloc_strategy);
    }

    //! \brief Construction from a stack
    //! \param stack_ stack object (could be external or internal, important is that it must
    //! have a copy constructor, \c top() and \c pop() methods )
    template <class stack_type>
    normal_stack(const stack_type & stack_) :
        size_(0),
        cache_offset(0),
        current_element(NULL),
        cache(blocks_per_page * 2),
        front_page(cache.begin() + blocks_per_page),
        back_page(cache.begin()),
        bids(0)
    {
        bids.reserve(blocks_per_page);

        stack_type stack_copy = stack_;
        const size_type sz = stack_copy.size();
        size_type i;

        std::vector<value_type> tmp(sz);

        for (i = 0; i < sz; ++i)
        {
            tmp[sz - i - 1] = stack_copy.top();
            stack_copy.pop();
        }
        for (i = 0; i < sz; ++i)
            this->push(tmp[i]);
    }
    virtual ~normal_stack()
    {
        STXXL_VERBOSE(STXXL_PRETTY_FUNCTION_NAME);
        block_manager::get_instance()->delete_blocks(bids.begin(), bids.end());
    }
    size_type size() const
    {
        return size_;
    }
    bool empty() const
    {
        return (!size_);
    }
    value_type & top()
    {
        assert(size_ > 0);
        return (*current_element);
    }
    const value_type & top() const
    {
        assert(size_ > 0);
        return (*current_element);
    }
    void push(const value_type & val)
    {
        assert(cache_offset <= 2 * blocks_per_page * block_type::size);
        //assert(cache_offset >= 0);

        if (cache_offset == 2 * blocks_per_page * block_type::size) // cache overflow
        {
            STXXL_VERBOSE2("growing, size: " << size_);

            bids.resize(bids.size() + blocks_per_page);
            typename std::vector<bid_type>::iterator cur_bid = bids.end() - blocks_per_page;
            block_manager::get_instance()->new_blocks(alloc_strategy, cur_bid, bids.end(), cur_bid - bids.begin());

            simple_vector<request_ptr> requests(blocks_per_page);

            for (int i = 0; i < blocks_per_page; ++i, ++cur_bid)
            {
                requests[i] = (back_page + i)->write(*cur_bid);
            }


            std::swap(back_page, front_page);

            bids.reserve(bids.size() + blocks_per_page);

            cache_offset = blocks_per_page * block_type::size + 1;
            current_element = &((*front_page)[0]);
            ++size_;

            wait_all(requests.begin(), blocks_per_page);

            *current_element = val;

            return;
        }

        current_element = element(cache_offset);
        *current_element = val;
        ++size_;
        ++cache_offset;
    }
    void pop()
    {
        assert(cache_offset <= 2 * blocks_per_page * block_type::size);
        assert(cache_offset > 0);
        assert(size_ > 0);

        if (cache_offset == 1 && bids.size() >= blocks_per_page)
        {
            STXXL_VERBOSE2("shrinking, size: " << size_);

            simple_vector<request_ptr> requests(blocks_per_page);

            {
                typename std::vector<bid_type>::const_iterator cur_bid = bids.end();
                for (int i = blocks_per_page - 1; i >= 0; --i)
                {
                    requests[i] = (front_page + i)->read(*(--cur_bid));
                }
            }

            std::swap(front_page, back_page);

            cache_offset = blocks_per_page * block_type::size;
            --size_;
            current_element = &((*(back_page + (blocks_per_page - 1)))[block_type::size - 1]);

            wait_all(requests.begin(), blocks_per_page);

            block_manager::get_instance()->delete_blocks(bids.end() - blocks_per_page, bids.end());
            bids.resize(bids.size() - blocks_per_page);

            return;
        }

        --size_;

        current_element = element((--cache_offset) - 1);
    }

private:
    value_type * element(unsigned_type offset)
    {
        if (offset < blocks_per_page * block_type::size)
            return &((*(back_page + offset / block_type::size))[offset % block_type::size]);


        unsigned_type unbiased_offset = offset - blocks_per_page * block_type::size;
        return &((*(front_page + unbiased_offset / block_type::size))[unbiased_offset % block_type::size]);
    }
};


//! \brief Efficient implementation that uses prefetching and overlapping using internal buffers

//! Use it if your access pattern consists of many repeated push'es and pop's
//! For semantics of the methods see documentation of the STL \c std::stack.
//! \warning The amortized complexity of operation is not O(1/DB), rather O(DB)
template <class Config_>
class grow_shrink_stack : private noncopyable
{
public:
    typedef Config_ cfg;
    typedef typename cfg::value_type value_type;
    typedef typename cfg::alloc_strategy alloc_strategy_type;
    typedef typename cfg::size_type size_type;
    enum {
        blocks_per_page = cfg::blocks_per_page,
        block_size = cfg::block_size,
    };

    typedef typed_block<block_size, value_type> block_type;
    typedef BID<block_size> bid_type;

private:
    size_type size_;
    unsigned_type cache_offset;
    value_type * current_element;
    simple_vector<block_type> cache;
    typename simple_vector<block_type>::iterator cache_buffers;
    typename simple_vector<block_type>::iterator overlap_buffers;
    simple_vector<request_ptr> requests;
    std::vector<bid_type> bids;
    alloc_strategy_type alloc_strategy;

public:
    grow_shrink_stack() :
        size_(0),
        cache_offset(0),
        current_element(NULL),
        cache(blocks_per_page * 2),
        cache_buffers(cache.begin()),
        overlap_buffers(cache.begin() + blocks_per_page),
        requests(blocks_per_page),
        bids(0)
    {
        bids.reserve(blocks_per_page);
    }

    void swap(grow_shrink_stack & obj)
    {
        std::swap(size_, obj.size_);
        std::swap(cache_offset, obj.cache_offset);
        std::swap(current_element, obj.current_element);
        std::swap(cache, obj.cache);
        std::swap(cache_buffers, obj.cache_buffers);
        std::swap(overlap_buffers, obj.overlap_buffers);
        std::swap(requests, obj.requests);
        std::swap(bids, obj.bids);
        std::swap(alloc_strategy, obj.alloc_strategy);
    }

    //! \brief Construction from a stack
    //! \param stack_ stack object (could be external or internal, important is that it must
    //! have a copy constructor, \c top() and \c pop() methods )
    template <class stack_type>
    grow_shrink_stack(const stack_type & stack_) :
        size_(0),
        cache_offset(0),
        current_element(NULL),
        cache(blocks_per_page * 2),
        cache_buffers(cache.begin()),
        overlap_buffers(cache.begin() + blocks_per_page),
        requests(blocks_per_page),
        bids(0)
    {
        bids.reserve(blocks_per_page);

        stack_type stack_copy = stack_;
        const size_type sz = stack_copy.size();
        size_type i;

        std::vector<value_type> tmp(sz);

        for (i = 0; i < sz; ++i)
        {
            tmp[sz - i - 1] = stack_copy.top();
            stack_copy.pop();
        }
        for (i = 0; i < sz; ++i)
            this->push(tmp[i]);
    }
    virtual ~grow_shrink_stack()
    {
        STXXL_VERBOSE(STXXL_PRETTY_FUNCTION_NAME);
        try
        {
            if (requests[0].get())
                wait_all(requests.begin(), blocks_per_page);
        }
        catch (const io_error & ex)
        { }
        block_manager::get_instance()->delete_blocks(bids.begin(), bids.end());
    }
    size_type size() const
    {
        return size_;
    }
    bool empty() const
    {
        return (!size_);
    }
    value_type & top()
    {
        assert(size_ > 0);
        return (*current_element);
    }
    const value_type & top() const
    {
        assert(size_ > 0);
        return (*current_element);
    }
    void push(const value_type & val)
    {
        assert(cache_offset <= blocks_per_page * block_type::size);
        //assert(cache_offset >= 0);

        if (cache_offset == blocks_per_page * block_type::size) // cache overflow
        {
            STXXL_VERBOSE2("growing, size: " << size_);

            bids.resize(bids.size() + blocks_per_page);
            typename std::vector<bid_type>::iterator cur_bid = bids.end() - blocks_per_page;
            block_manager::get_instance()->new_blocks(alloc_strategy, cur_bid, bids.end(), cur_bid - bids.begin());

            for (int i = 0; i < blocks_per_page; ++i, ++cur_bid)
            {
                if (requests[i].get())
                    requests[i]->wait();

                requests[i] = (cache_buffers + i)->write(*cur_bid);
            }

            std::swap(cache_buffers, overlap_buffers);

            bids.reserve(bids.size() + blocks_per_page);

            cache_offset = 1;
            current_element = &((*cache_buffers)[0]);
            ++size_;

            *current_element = val;

            return;
        }

        current_element = &((*(cache_buffers + cache_offset / block_type::size))[cache_offset % block_type::size]);
        *current_element = val;
        ++size_;
        ++cache_offset;
    }
    void pop()
    {
        assert(cache_offset <= blocks_per_page * block_type::size);
        assert(cache_offset > 0);
        assert(size_ > 0);

        if (cache_offset == 1 && bids.size() >= blocks_per_page)
        {
            STXXL_VERBOSE2("shrinking, size: " << size_);

            if (requests[0].get())
                wait_all(requests.begin(), blocks_per_page);


            std::swap(cache_buffers, overlap_buffers);

            if (bids.size() > blocks_per_page)
            {
                STXXL_VERBOSE2("prefetching, size: " << size_);
                typename std::vector<bid_type>::const_iterator cur_bid = bids.end() - blocks_per_page;
                for (int i = blocks_per_page - 1; i >= 0; --i)
                    requests[i] = (overlap_buffers + i)->read(*(--cur_bid));
            }

            block_manager::get_instance()->delete_blocks(bids.end() - blocks_per_page, bids.end());
            bids.resize(bids.size() - blocks_per_page);

            cache_offset = blocks_per_page * block_type::size;
            --size_;
            current_element = &((*(cache_buffers + (blocks_per_page - 1)))[block_type::size - 1]);

            return;
        }

        --size_;
        unsigned_type cur_offset = (--cache_offset) - 1;
        current_element = &((*(cache_buffers + cur_offset / block_type::size))[cur_offset % block_type::size]);
    }
};

//! \brief Efficient implementation that uses prefetching and overlapping using (shared) buffers pools
//! \warning This is a single buffer stack! Each direction change (push() followed by pop() or vice versa) may cause one I/O.
template <class Config_>
class grow_shrink_stack2 : private noncopyable
{
public:
    typedef Config_ cfg;
    typedef typename cfg::value_type value_type;
    typedef typename cfg::alloc_strategy alloc_strategy_type;
    typedef typename cfg::size_type size_type;
    enum {
        blocks_per_page = cfg::blocks_per_page,     // stack of this type has only one page
        block_size = cfg::block_size,
    };

    typedef typed_block<block_size, value_type> block_type;
    typedef BID<block_size> bid_type;

private:
    typedef read_write_pool<block_type> pool_type;

    size_type size_;
    unsigned_type cache_offset;
    block_type * cache;
    std::vector<bid_type> bids;
    alloc_strategy_type alloc_strategy;
    unsigned_type pref_aggr;
    pool_type * owned_pool;
    pool_type * pool;

public:
    //! \brief Constructs stack
    //! \param pool_ block write/prefetch pool
    //! \param prefetch_aggressiveness number of blocks that will be used from prefetch pool
    grow_shrink_stack2(
        pool_type & pool_,
        unsigned_type prefetch_aggressiveness = 0) :
        size_(0),
        cache_offset(0),
        cache(new block_type),
        pref_aggr(prefetch_aggressiveness),
        owned_pool(NULL),
        pool(&pool_)
    {
        STXXL_VERBOSE2("grow_shrink_stack2::grow_shrink_stack2(...)");
    }

    //! \brief Constructs stack
    //! \param p_pool_ prefetch pool, that will be used for block prefetching
    //! \param w_pool_ write pool, that will be used for block writing
    //! \param prefetch_aggressiveness number of blocks that will be used from prefetch pool
    _STXXL_DEPRECATED(grow_shrink_stack2(
        prefetch_pool<block_type> & p_pool_,
        write_pool<block_type> & w_pool_,
        unsigned_type prefetch_aggressiveness = 0)) :
        size_(0),
        cache_offset(0),
        cache(new block_type),
        pref_aggr(prefetch_aggressiveness),
        owned_pool(new pool_type(p_pool_, w_pool_)),
        pool(owned_pool)
    {
        STXXL_VERBOSE2("grow_shrink_stack2::grow_shrink_stack2(...)");
    }

    void swap(grow_shrink_stack2 & obj)
    {
        std::swap(size_, obj.size_);
        std::swap(cache_offset, obj.cache_offset);
        std::swap(cache, obj.cache);
        std::swap(bids, obj.bids);
        std::swap(alloc_strategy, obj.alloc_strategy);
        std::swap(pref_aggr, obj.pref_aggr);
        std::swap(owned_pool, obj.owned_pool);
        std::swap(pool, obj.pool);
    }

    virtual ~grow_shrink_stack2()
    {
        try
        {
            STXXL_VERBOSE2("grow_shrink_stack2::~grow_shrink_stack2()");
            const int_type bids_size = bids.size();
            const int_type last_pref = STXXL_MAX(int_type(bids_size) - int_type(pref_aggr), (int_type)0);
            int_type i;
            for (i = bids_size - 1; i >= last_pref; --i)
            {
                // clean the prefetch buffer
                pool->invalidate(bids[i]);
            }
            typename std::vector<bid_type>::iterator cur = bids.begin();
            typename std::vector<bid_type>::const_iterator end = bids.end();
            for ( ; cur != end; ++cur)
            {
                // FIXME: read_write_pool needs something like cancel_write(bid)
                block_type * b = NULL;  // w_pool.steal(*cur);
                if (b)
                {
                    pool->add(cache);   // return buffer
                    cache = b;
                }
            }
            delete cache;
        }
        catch (const io_error & ex)
        { }
        block_manager::get_instance()->delete_blocks(bids.begin(), bids.end());
        delete owned_pool;
    }

    size_type size() const
    {
        return size_;
    }

    bool empty() const
    {
        return (!size_);
    }

    void push(const value_type & val)
    {
        STXXL_VERBOSE3("grow_shrink_stack2::push(" << val << ")");
        assert(cache_offset <= block_type::size);

        if (cache_offset == block_type::size)
        {
            STXXL_VERBOSE2("grow_shrink_stack2::push(" << val << ") growing, size: " << size_);

            bids.resize(bids.size() + 1);
            typename std::vector<bid_type>::iterator cur_bid = bids.end() - 1;
            block_manager::get_instance()->new_blocks(alloc_strategy, cur_bid, bids.end(), cur_bid - bids.begin());
            pool->write(cache, bids.back());
            cache = pool->steal();
            const int_type bids_size = bids.size();
            const int_type last_pref = STXXL_MAX(int_type(bids_size) - int_type(pref_aggr) - 1, (int_type)0);
            for (int_type i = bids_size - 2; i >= last_pref; --i)
            {
                // clean prefetch buffers
                pool->invalidate(bids[i]);
            }
            cache_offset = 0;
        }
        (*cache)[cache_offset] = val;
        ++size_;
        ++cache_offset;

        assert(cache_offset > 0);
        assert(cache_offset <= block_type::size);
    }

    value_type & top()
    {
        assert(size_ > 0);
        assert(cache_offset > 0);
        assert(cache_offset <= block_type::size);
        return (*cache)[cache_offset - 1];
    }

    const value_type & top() const
    {
        assert(size_ > 0);
        assert(cache_offset > 0);
        assert(cache_offset <= block_type::size);
        return (*cache)[cache_offset - 1];
    }

    void pop()
    {
        STXXL_VERBOSE3("grow_shrink_stack2::pop()");
        assert(size_ > 0);
        assert(cache_offset > 0);
        assert(cache_offset <= block_type::size);
        if (cache_offset == 1 && (!bids.empty()))
        {
            STXXL_VERBOSE2("grow_shrink_stack2::pop() shrinking, size = " << size_);

            bid_type last_block = bids.back();
            bids.pop_back();
            pool->read(cache, last_block)->wait();
            block_manager::get_instance()->delete_block(last_block);
            rehint();
            cache_offset = block_type::size + 1;
        }

        --cache_offset;
        --size_;
    }

    //! \brief Sets level of prefetch aggressiveness (number
    //! of blocks from the prefetch pool used for prefetching)
    //! \param new_p new value for the prefetch aggressiveness
    void set_prefetch_aggr(unsigned_type new_p)
    {
        if (pref_aggr > new_p)
        {
            const int_type bids_size = bids.size();
            const int_type last_pref = STXXL_MAX(int_type(bids_size) - int_type(pref_aggr), (int_type)0);
            for (int_type i = bids_size - new_p - 1; i >= last_pref; --i)
            {
                // clean prefetch buffers
                pool->invalidate(bids[i]);
            }
        }
        pref_aggr = new_p;
        rehint();
    }

    //! \brief Returns number of blocks used for prefetching
    unsigned_type get_prefetch_aggr() const
    {
        return pref_aggr;
    }

private:
    //! \brief hint the last pref_aggr external blocks
    void rehint()
    {
        const int_type bids_size = bids.size();
        const int_type last_pref = STXXL_MAX(int_type(bids_size) - int_type(pref_aggr), (int_type)0);
        for (int_type i = bids_size - 1; i >= last_pref; --i)
        {
            pool->hint(bids[i]);  // prefetch
        }
    }
};


//! \brief A stack that migrates from internal memory to external when its size exceeds a certain threshold

//! For semantics of the methods see documentation of the STL \c std::stack.
template <unsigned_type CritSize, class ExternalStack, class InternalStack>
class migrating_stack : private noncopyable
{
public:
    typedef typename ExternalStack::cfg cfg;
    typedef typename cfg::value_type value_type;
    typedef typename cfg::size_type size_type;
    enum {
        blocks_per_page = cfg::blocks_per_page,
        block_size = cfg::block_size
    };


    typedef InternalStack int_stack_type;
    typedef ExternalStack ext_stack_type;

private:
    enum { critical_size = CritSize };

    int_stack_type * int_impl;
    ext_stack_type * ext_impl;

    // not implemented yet
    template <class stack_type>
    migrating_stack(const stack_type & stack_);

public:
    migrating_stack() : int_impl(new int_stack_type()), ext_impl(NULL) { }

    void swap(migrating_stack & obj)
    {
        std::swap(int_impl, obj.int_impl);
        std::swap(ext_impl, obj.ext_impl);
    }

    //! \brief Returns true if current implementation is internal, otherwise false
    bool internal() const
    {
        assert((int_impl && !ext_impl) || (!int_impl && ext_impl));
        return int_impl;
    }
    //! \brief Returns true if current implementation is external, otherwise false
    bool external() const
    {
        assert((int_impl && !ext_impl) || (!int_impl && ext_impl));
        return ext_impl;
    }

    bool empty() const
    {
        assert((int_impl && !ext_impl) || (!int_impl && ext_impl));
        return (int_impl) ? int_impl->empty() : ext_impl->empty();
    }
    size_type size() const
    {
        assert((int_impl && !ext_impl) || (!int_impl && ext_impl));
        return (int_impl) ? size_type(int_impl->size()) : ext_impl->size();
    }
    value_type & top()
    {
        assert((int_impl && !ext_impl) || (!int_impl && ext_impl));
        return (int_impl) ? int_impl->top() : ext_impl->top();
    }
    const value_type & top() const
    {
        assert((int_impl && !ext_impl) || (!int_impl && ext_impl));
        return (int_impl) ? int_impl->top() : ext_impl->top();
    }
    void push(const value_type & val)
    {
        assert((int_impl && !ext_impl) || (!int_impl && ext_impl));

        if (int_impl)
        {
            int_impl->push(val);
            if (int_impl->size() == critical_size)
            {
                // migrate to external stack
                ext_impl = new ext_stack_type(*int_impl);
                delete int_impl;
                int_impl = NULL;
            }
        }
        else
            ext_impl->push(val);
    }
    void pop()
    {
        assert((int_impl && !ext_impl) || (!int_impl && ext_impl));

        if (int_impl)
            int_impl->pop();
        else
            ext_impl->pop();
    }
    virtual ~migrating_stack()
    {
        delete int_impl;
        delete ext_impl;
    }
};

//! \}


//! \addtogroup stlcont
//! \{

enum stack_externality { external, migrating, internal };
enum stack_behaviour { normal, grow_shrink, grow_shrink2 };

//! \brief Stack type generator

//!  \tparam ValTp type of contained objects (POD with no references to internal memory)
//!  \tparam Externality one of
//!    - \c external , \b external container, implementation is chosen according
//!      to \c Behaviour parameter, is default
//!    - \c migrating , migrates from internal implementation given by \c IntStackTp parameter
//!      to external implementation given by \c Behaviour parameter when size exceeds \c MigrCritSize
//!    - \c internal , choses \c IntStackTp implementation
//!  \tparam Behaviour chooses \b external implementation, one of:
//!    - \c normal , conservative version, implemented in \c stxxl::normal_stack , is default
//!    - \c grow_shrink , efficient version, implemented in \c stxxl::grow_shrink_stack
//!    - \c grow_shrink2 , efficient version, implemented in \c stxxl::grow_shrink_stack2
//!  \tparam BlocksPerPage defines how many blocks has one page of internal cache of an
//!       \b external implementation, default is four. All \b external implementations have
//!       \b two pages.
//!  \tparam BlkSz external block size in bytes, default is 2 MiB
//!  \tparam IntStackTp type of internal stack used for some implementations
//!  \tparam MigrCritSize threshold value for number of elements when
//!    \c stxxl::migrating_stack migrates to the external memory
//!  \tparam  AllocStr one of allocation strategies: \c striping , \c RC , \c SR , or \c FR
//!    default is RC
//!  \tparam SzTp size type, default is \c stxxl::int64
//!
//! Configured stack type is available as \c STACK_GENERATOR<>::result. <BR> <BR>
//! Examples:
//!    - \c STACK_GENERATOR<double>::result external stack of \c double's ,
//!    - \c STACK_GENERATOR<double,internal>::result internal stack of \c double's ,
//!    - \c STACK_GENERATOR<double,external,grow_shrink>::result external
//!      grow-shrink stack of \c double's ,
//!    - \c STACK_GENERATOR<double,migrating,grow_shrink>::result migrating
//!      grow-shrink stack of \c double's, internal implementation is \c std::stack<double> ,
//!    - \c STACK_GENERATOR<double,migrating,grow_shrink,1,512*1024>::result migrating
//!      grow-shrink stack of \c double's with 1 block per page and block size 512 KiB
//!      (total memory occupied = 1 MiB).
//! For configured stack method semantics see documentation of the STL \c std::stack.
template <
    class ValTp,
    stack_externality Externality = external,
    stack_behaviour Behaviour = normal,
    unsigned BlocksPerPage = 4,
    unsigned BlkSz = STXXL_DEFAULT_BLOCK_SIZE(ValTp),

    class IntStackTp = std::stack<ValTp>,
    unsigned_type MigrCritSize = (2 * BlocksPerPage * BlkSz),

    class AllocStr = STXXL_DEFAULT_ALLOC_STRATEGY,
    class SzTp = stxxl::int64
    >
class STACK_GENERATOR
{
    typedef stack_config_generator<ValTp, BlocksPerPage, BlkSz, AllocStr, SzTp> cfg;

    typedef typename IF<Behaviour == grow_shrink,
                        grow_shrink_stack<cfg>,
                        grow_shrink_stack2<cfg> >::result GrShrTp;
    typedef typename IF<Behaviour == normal, normal_stack<cfg>, GrShrTp>::result ExtStackTp;
    typedef typename IF<Externality == migrating,
                        migrating_stack<MigrCritSize, ExtStackTp, IntStackTp>, ExtStackTp>::result MigrOrNotStackTp;

public:
    typedef typename IF<Externality == internal, IntStackTp, MigrOrNotStackTp>::result result;
};

//! \}

__STXXL_END_NAMESPACE


namespace std
{
    template <class Config_>
    void swap(stxxl::normal_stack<Config_> & a,
              stxxl::normal_stack<Config_> & b)
    {
        a.swap(b);
    }

    template <class Config_>
    void swap(stxxl::grow_shrink_stack<Config_> & a,
              stxxl::grow_shrink_stack<Config_> & b)
    {
        a.swap(b);
    }

    template <class Config_>
    void swap(stxxl::grow_shrink_stack2<Config_> & a,
              stxxl::grow_shrink_stack2<Config_> & b)
    {
        a.swap(b);
    }

    template <stxxl::unsigned_type CritSize, class ExternalStack, class InternalStack>
    void swap(stxxl::migrating_stack<CritSize, ExternalStack, InternalStack> & a,
              stxxl::migrating_stack<CritSize, ExternalStack, InternalStack> & b)
    {
        a.swap(b);
    }
}

#endif // !STXXL_STACK_HEADER
// vim: et:ts=4:sw=4