This file is indexed.

/usr/include/tachyon/threads.h is in libtachyon-dev 0.99~b2+dfsg-0.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/*
 * threads.h - code for spawning threads on various platforms.
 *
 *  $Id: threads.h,v 1.48 2011/02/07 19:43:34 johns Exp $
 */ 

#ifndef RT_THREADS_INC
#define RT_THREADS_INC 1

#ifdef __cplusplus
extern "C" {
#endif

/* define which thread calls to use */
#if defined(USEPOSIXTHREADS) && defined(USEUITHREADS)
#error You may only define USEPOSIXTHREADS or USEUITHREADS, but not both
#endif

/* POSIX Threads */
#if defined(_AIX) || defined(__APPLE__) || defined(_CRAY) || defined(__hpux) || defined(__irix) || defined(__linux) || defined(__osf__) ||  defined(__PARAGON__)
#if !defined(USEUITHREADS) && !defined(USEPOSIXTHREADS)
#define USEPOSIXTHREADS
#endif
#endif

/* Unix International Threads */
#if defined(SunOS)
#if !defined(USEPOSIXTHREADS) && !defined(USEUITHREADS)
#define USEUITHREADS
#endif
#endif


#ifdef THR
#ifdef USEPOSIXTHREADS
#include <pthread.h>

typedef pthread_t        rt_thread_t;
typedef pthread_mutex_t   rt_mutex_t;
typedef pthread_cond_t     rt_cond_t;

typedef struct rwlock_struct {
  pthread_mutex_t lock;          /**< read/write monitor lock */
  int rwlock;                    /**< if >0 = #rdrs, if <0 = wrtr, 0=none */
  pthread_cond_t  rdrs_ok;       /**< start waiting readers */
  unsigned int waiting_writers;  /**< # of waiting writers  */
  pthread_cond_t  wrtr_ok;       /**< start waiting writers */ 
} rt_rwlock_t;

#endif

#ifdef USEUITHREADS
#include <thread.h>

typedef thread_t  rt_thread_t;
typedef mutex_t   rt_mutex_t;
typedef cond_t    rt_cond_t;
typedef rwlock_t  rt_rwlock_t;
#endif


#ifdef _MSC_VER
#include <windows.h>
typedef HANDLE rt_thread_t;
typedef CRITICAL_SECTION rt_mutex_t;

#if 0 && (NTDDI_VERSION >= NTDDI_WS08 || _WIN32_WINNT > 0x0600)
/* Use native condition variables only with Windows Server 2008 and newer... */
#define RTUSEWIN2008CONDVARS 1
typedef CONDITION_VARIABLE rt_cond_t;
#else
/* Every version of Windows prior to Vista/WS2008 must emulate */
/* variables using manually resettable events or other schemes */

/* For higher performance, use interlocked memory operations   */
/* rather than locking/unlocking mutexes when manipulating     */
/* internal state.                                             */
#if 1
#define RTUSEINTERLOCKEDATOMICOPS 1
#endif
#define RT_COND_SIGNAL    0
#define RT_COND_BROADCAST 1
typedef struct {
  LONG waiters;                  /**< MUST be 32-bit aligned for correct   */
                                 /**< operation with InterlockedXXX() APIs */
  CRITICAL_SECTION waiters_lock; /**< lock itself                          */
  HANDLE events[2];              /**< Signal and broadcast event HANDLEs.  */
} rt_cond_t;
#endif

typedef struct rwlock_struct {
  rt_mutex_t lock;               /**< read/write monitor lock */
  int rwlock;                    /**< if >0 = #rdrs, if <0 = wrtr, 0=none */
  rt_cond_t  rdrs_ok;            /**< start waiting readers */
  unsigned int waiting_writers;  /**< # of waiting writers  */
  rt_cond_t  wrtr_ok;            /**< start waiting writers */ 
} rt_rwlock_t;

#endif
#endif /* _MSC_VER */


#ifndef THR
typedef int rt_thread_t;
typedef int rt_mutex_t;
typedef int rt_cond_t;
typedef int rt_rwlock_t;
#endif


typedef struct barrier_struct {
  int padding1[8];        /**< Pad to avoid false sharing, cache aliasing */
  rt_mutex_t lock;        /**< Mutex lock for the structure */
  int n_clients;          /**< Number of threads to wait for at barrier */
  int n_waiting;          /**< Number of currently waiting threads */
  int phase;              /**< Flag to separate waiters from fast workers */
  int sum;                /**< Sum of arguments passed to barrier_wait */
  int result;             /**< Answer to be returned by barrier_wait */
  rt_cond_t wait_cv;      /**< Clients wait on condition variable to proceed */
  int padding2[8];        /**< Pad to avoid false sharing, cache aliasing */
} rt_barrier_t;

typedef struct rt_run_barrier_struct {
  int padding1[8];        /**< Pad to avoid false sharing, cache aliasing */
  rt_mutex_t lock;        /**< Mutex lock for the structure */
  int n_clients;          /**< Number of threads to wait for at barrier */
  int n_waiting;          /**< Number of currently waiting threads */
  int phase;              /**< Flag to separate waiters from fast workers */
  void * (*fctn)(void *); /**< Fctn ptr to call, or NULL if done */
  void * parms;           /**< parms for fctn pointer */
  void * (*rslt)(void *); /**< Fctn ptr to return to barrier wait callers */
  void * rsltparms;       /**< parms to return to barrier wait callers */
  rt_cond_t wait_cv;      /**< Clients wait on condition variable to proceed */
  int padding2[8];        /**< Pad to avoid false sharing, cache aliasing */
} rt_run_barrier_t;


/*
 * Routines for querying processor counts, and managing CPU affinity
 */
/** number of physical processors available */
int rt_thread_numphysprocessors(void);

/** number of processors available, subject to user override */
int rt_thread_numprocessors(void);

/** query CPU affinity of the calling process (if allowed by host system) */
int * rt_cpu_affinitylist(int *cpuaffinitycount);

/** set the CPU affinity of the current thread (if allowed by host system) */
int rt_thread_set_self_cpuaffinity(int cpu);

/** set the concurrency level and scheduling scope for threads */
int rt_thread_setconcurrency(int);


/*
 * Thread management
 */
/** create a new child thread */
int rt_thread_create(rt_thread_t *, void * fctn(void *), void *);

/** join (wait for completion of, and merge with) a thread */
int rt_thread_join(rt_thread_t, void **);


/*
 * Mutex management
 */
/** initialize a mutex */
int rt_mutex_init(rt_mutex_t *);

/** lock a mutex */
int rt_mutex_lock(rt_mutex_t *);

/** try to lock a mutex */
int rt_mutex_trylock(rt_mutex_t *);

/** lock a mutex by spinning only */
int rt_mutex_spin_lock(rt_mutex_t *);

/** unlock a mutex */
int rt_mutex_unlock(rt_mutex_t *);

/** destroy a mutex */
int rt_mutex_destroy(rt_mutex_t *);


/*
 * Condition variable management
 */
/** initialize a condition variable */
int rt_cond_init(rt_cond_t *);

/** destroy a condition variable */
int rt_cond_destroy(rt_cond_t *);

/** wait on a condition variable */
int rt_cond_wait(rt_cond_t *, rt_mutex_t *);

/** signal a condition variable, waking at least one thread */
int rt_cond_signal(rt_cond_t *);

/** signal a condition variable, waking all threads */
int rt_cond_broadcast(rt_cond_t *);


/*
 * Reader/writer lock management
 */
/** initialize a reader/writer lock */
int rt_rwlock_init(rt_rwlock_t *);

/** set reader lock */
int rt_rwlock_readlock(rt_rwlock_t *);

/** set writer lock */
int rt_rwlock_writelock(rt_rwlock_t *);

/** unlock reader/writer lock */
int rt_rwlock_unlock(rt_rwlock_t *);


/*
 * counting barrier
 */
/** initialize counting barrier primitive */
rt_barrier_t * rt_thread_barrier_init(int n_clients);

/** destroy counting barrier primitive */
void rt_thread_barrier_destroy(rt_barrier_t *barrier);

/** synchronize on counting barrier primitive */
int rt_thread_barrier(rt_barrier_t *barrier, int increment);


/*
 * This is a symmetric barrier routine designed to be used
 * in implementing a sleepable thread pool.
 */
/** initialize thread pool barrier */
int rt_thread_run_barrier_init(rt_run_barrier_t *barrier, int n_clients);

/** destroy thread pool barrier */
void rt_thread_run_barrier_destroy(rt_run_barrier_t *barrier);

/** sleeping barrier synchronization for thread pool */
void * (*rt_thread_run_barrier(rt_run_barrier_t *barrier,
                                void * fctn(void*),
                                void * parms,
                                void **rsltparms))(void *);

/** non-blocking poll to see if peers are already at the barrier */
int rt_thread_run_barrier_poll(rt_run_barrier_t *barrier);


/**
 * Task tile struct for stack, iterator, and scheduler routines;
 * 'start' is inclusive, 'end' is exclusive.  This yields a
 * half-open interval that corresponds to a typical 'for' loop.
 */
typedef struct rt_tasktile_struct {
  int start;         /**< starting task ID (inclusive) */
  int end;           /**< ending task ID (exclusive) */
} rt_tasktile_t;


/*
 * tile stack
 */
#define RT_TILESTACK_EMPTY -1

/**
 * stack of work tiles, for error handling
 */
typedef struct {
  rt_mutex_t mtx;    /**< Mutex lock for the structure */
  int growthrate;    /**< stack growth chunk size */
  int size;          /**< current allocated stack size */
  int top;           /**< index of top stack element */
  rt_tasktile_t *s;  /**< stack of task tiles */
} rt_tilestack_t;

/** initialize task tile stack (to empty) */
int rt_tilestack_init(rt_tilestack_t *s, int size);

/** destroy task tile stack */
void rt_tilestack_destroy(rt_tilestack_t *);

/** shrink memory buffers associated with task tile stack if possible */
int rt_tilestack_compact(rt_tilestack_t *);

/** push a task tile onto the stack */
int rt_tilestack_push(rt_tilestack_t *, const rt_tasktile_t *);

/** pop a task tile off of the stack */
int rt_tilestack_pop(rt_tilestack_t *, rt_tasktile_t *);

/** pop all of the task tiles off of the stack */
int rt_tilestack_popall(rt_tilestack_t *);

/** query if the task tile stack is empty or not */
int rt_tilestack_empty(rt_tilestack_t *);


/**
 * Shared iterators intended for trivial CPU/GPU load balancing with no
 * exception handling capability (all work units must complete with
 * no errors, or else the whole thing is canceled).
 */
#define RT_SCHED_DONE     -1   /**< no work left to process        */
#define RT_SCHED_CONTINUE  0   /**< some work remains in the queue */

/** iterator used for dynamic load balancing */
typedef struct rt_shared_iterator_struct {
  rt_mutex_t mtx;      /**< mutex lock */
  int start;           /**< starting value (inclusive) */
  int end;             /**< ending value (exlusive) */
  int current;         /**< current value */
  int fatalerror;      /**< cancel processing immediately for all threads */
} rt_shared_iterator_t;

/** initialize a shared iterator */
int rt_shared_iterator_init(rt_shared_iterator_t *it);

/** destroy a shared iterator */
int rt_shared_iterator_destroy(rt_shared_iterator_t *it);

/** Set shared iterator state to half-open interval defined by tile */
int rt_shared_iterator_set(rt_shared_iterator_t *it, rt_tasktile_t *tile);

/**
 * iterate the shared iterator with a requested tile size,
 * returns the tile received, and a return code of -1 if no
 * iterations left or a fatal error has occured during processing,
 * canceling all worker threads.
 */
int rt_shared_iterator_next_tile(rt_shared_iterator_t *it, int reqsize,
                                 rt_tasktile_t *tile);

/** worker thread calls this to indicate a fatal error */
int rt_shared_iterator_setfatalerror(rt_shared_iterator_t *it);

/** master thread calls this to query for fatal errors */
int rt_shared_iterator_getfatalerror(rt_shared_iterator_t *it);


/*
 * Thread pool.
 */
/** shortcut macro to tell the create routine we only want CPU cores */
#define RT_THREADPOOL_DEVLIST_CPUSONLY NULL

/** symbolic constant macro to test if we have a GPU or not */
#define RT_THREADPOOL_DEVID_CPU -1

/** thread-specific handle data for workers */
typedef struct rt_threadpool_workerdata_struct {
  int padding1[8];                        /**< avoid false sharing */
  rt_shared_iterator_t *iter;             /**< dynamic work scheduler */
  rt_tilestack_t *errorstack;             /**< stack of tiles that failed */
  int threadid;                           /**< worker thread's id */
  int threadcount;                        /**< total number of worker threads */
  int devid;                              /**< worker CPU/GPU device ID */
  float devspeed;                         /**< speed scaling for this device */
  void *parms;                            /**< fctn parms for this worker */
  void *thrpool;                          /**< void ptr to thread pool struct */
  int padding2[8];                        /**< avoid false sharing */
} rt_threadpool_workerdata_t;

typedef struct rt_threadpool_struct {
  int workercount;                        /**< number of worker threads */
  int *devlist;                           /**< per-worker CPU/GPU device IDs */
  rt_shared_iterator_t iter;              /**< dynamic work scheduler */
  rt_tilestack_t errorstack;              /**< stack of tiles that failed */
  rt_thread_t *threads;                   /**< worker threads */
  rt_threadpool_workerdata_t *workerdata; /**< per-worker data */
  rt_run_barrier_t runbar;                /**< master/worker run barrier */
} rt_threadpool_t;

/** create a thread pool with a specified number of worker threads */
rt_threadpool_t * rt_threadpool_create(int workercount, int *devlist);

/** launch threads onto a new function, with associated parms */
int rt_threadpool_launch(rt_threadpool_t *thrpool,
                         void *fctn(void *), void *parms, int blocking);

/** wait for all worker threads to complete their work */
int rt_threadpool_wait(rt_threadpool_t *thrpool);

/** join all worker threads and free resources */
int rt_threadpool_destroy(rt_threadpool_t *thrpool);

/** query number of worker threads in the pool */
int rt_threadpool_get_workercount(rt_threadpool_t *thrpool);

/** worker thread can call this to get its ID and number of peers */
int rt_threadpool_worker_getid(void *voiddata, int *threadid, int *threadcount);

/** worker thread can call this to get its CPU/GPU device ID */
int rt_threadpool_worker_getdevid(void *voiddata, int *devid);

/**
 * Worker thread calls this to set relative speed of this device
 * as determined by the SM/core count and clock rate
 * Note: this should only be called once, during the worker's
 * device initialization process
 */
int rt_threadpool_worker_setdevspeed(void *voiddata, float speed);

/**
 * Worker thread calls this to get relative speed of this device
 * as determined by the SM/core count and clock rate
 */
int rt_threadpool_worker_getdevspeed(void *voiddata, float *speed);

/**
 * worker thread calls this to scale max tile size by worker speed
 * as determined by the SM/core count and clock rate
 */
int rt_threadpool_worker_devscaletile(void *voiddata, int *tilesize);

/** worker thread can call this to get its client data pointer */
int rt_threadpool_worker_getdata(void *voiddata, void **clientdata);

/** Set dynamic scheduler state to half-open interval defined by tile */
int rt_threadpool_sched_dynamic(rt_threadpool_t *thrpool, rt_tasktile_t *tile);

/**
 * worker thread calls this to get its next work unit
 * iterate the shared iterator, returns -1 if no iterations left
 */
int rt_threadpool_next_tile(void *thrpool, int reqsize, rt_tasktile_t *tile);

/**
 * worker thread calls this when it fails computing a tile after
 * it has already taken it from the scheduler
 */
int rt_threadpool_tile_failed(void *thrpool, rt_tasktile_t *tile);

/** worker thread calls this to indicate that an unrecoverable error occured */
int rt_threadpool_setfatalerror(void *thrparms);

/** master thread calls this to query for fatal errors */
int rt_threadpool_getfatalerror(void *thrparms);


/**
 * Routines to generate a pool of threads which then grind through
 * a dynamically load balanced work queue implemented as a shared iterator.
 * No exception handling is possible, just a simple all-or-nothing attept.
 * Useful for simple calculations that take very little time.
 * An array of threads is generated, launched, and joined all with one call.
 */
typedef struct rt_threadlaunch_struct {
  int padding1[8];              /**< avoid false sharing, cache aliasing */
  rt_shared_iterator_t *iter;   /**< dynamic scheduler iterator */
  int threadid;                 /**< ID of worker thread */
  int threadcount;              /**< number of workers */
  void * clientdata;            /**< worker parameters */
  int padding2[8];              /**< avoid false sharing, cache aliasing */
} rt_threadlaunch_t;

/** launch up to numprocs threads using shared iterator as a load balancer */
int rt_threadlaunch(int numprocs, void *clientdata, void * fctn(void *),
                    rt_tasktile_t *tile);

/** worker thread can call this to get its ID and number of peers */
int rt_threadlaunch_getid(void *thrparms, int *threadid, int *threadcount);

/** worker thread can call this to get its client data pointer */
int rt_threadlaunch_getdata(void *thrparms, void **clientdata);

/**
 * worker thread calls this to get its next work unit
 * iterate the shared iterator, returns -1 if no iterations left
 */
int rt_threadlaunch_next_tile(void *voidparms, int reqsize,
                              rt_tasktile_t *tile);

/** worker thread calls this to indicate that an unrecoverable error occured */
int rt_threadlaunch_setfatalerror(void *thrparms);


#ifdef __cplusplus
}
#endif

#endif