/usr/include/terralib/kernel/TeGeometryAlgorithms.h is in libterralib-dev 4.0.0-3build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 | /************************************************************************************
TerraLib - a library for developing GIS applications.
Copyright � 2001-2007 INPE and Tecgraf/PUC-Rio.
This code is part of the TerraLib library.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
You should have received a copy of the GNU Lesser General Public
License along with this library.
The authors reassure the license terms regarding the warranties.
They specifically disclaim any warranties, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose.
The library provided hereunder is on an "as is" basis, and the authors have no
obligation to provide maintenance, support, updates, enhancements, or modifications.
In no event shall INPE and Tecgraf / PUC-Rio be held liable to any party for direct,
indirect, special, incidental, or consequential damages arising out of the use
of this library and its documentation.
*************************************************************************************/
/*! \file TeGeometryAlgorithms.h
\brief This file contains Algorithms for Topological Operations.
\author Gilberto Ribeiro de Queiroz <gribeiro@dpi.inpe.br>
*/
#ifndef __TERRALIB_INTERNAL_GEOMETRYALGORITHMS_H
#define __TERRALIB_INTERNAL_GEOMETRYALGORITHMS_H
#include "TeGeometry.h"
#include "TeMultiGeometry.h"
#include "TePrecision.h"
#include "TeProjection.h"
//! Intersection coordinates of two segments.
typedef vector<TeCoord2D> TeIntersCoordsVec;
/** @defgroup GeometryAlgorithms Geometry algorithms
TerraLib geometry algorithms.
@{
*/
/** @defgroup TopologicalOperators Topological operators
@ingroup GeometryAlgorithms
Functions that test topologival relation between two objects.
\verbatim
The topological operators are based on the intersection of interior, exterior and boundary of geometries:
------------------------------------------------------------------------------------------------------------------
| TeGeometry | INTERIOR | BOUNDARY | EXTERIOR |
------------------------------------------------------------------------------------------------------------------
| TePoint | The point itself | Empty | Everything except interior |
| TeLine2D | All points except the end points | The two end points | Everything except interior and boundary |
| TeLinearRing | All points | Empty | Everything except interior and boundary |
| TePolygon | Everything between the external | All rings | Everything except interior and boundary |
| | ring and the inner rings | | |
------------------------------------------------------------------------------------------------------------------
We use:
- I: for Interior
- E: for Exterior
- B: for Boundary
- inter: Intersects
- ^: AND
- v: OR
- A = refer to two-dimensional geometries (TePolygon and TePolygonSet)
- L = refer to one-dimensional geometries (TeLine2D and TeLineSet)
- P = refer to 0-dimensional geometries (TePoint and TePointSet)
\endverbatim
@{
*/
/** @defgroup TeEquals Equals test
@ingroup TopologicalOperators
Check if one object is equal another object.
\verbatim
Applies to: P/P, L/L and A/A.
TeEquals(x, y) => (x inter y = x) ^ (y inter x = y)
(B(x) inter I(y) = false) ^ (B(x) inter E(y) = false)
\endverbatim
@{
*/
//! If a specialized function is not used, returns false.
template<class T1, class T2>
inline bool TeEquals(const T1& /*o1*/, const T2& /*o2*/)
{
return false;
}
//! Check if coordinate 1 and coordinate 2 are equal
template<>
TL_DLL bool TeEquals(const TeCoord2D& c1, const TeCoord2D& c2);
//! Check if point 1 and point 2 are equal
template<>
TL_DLL bool TeEquals(const TePoint& p1, const TePoint& p2);
//! Check if lineRed and lineBlue are equal
template<>
TL_DLL bool TeEquals(const TeLine2D& redLine, const TeLine2D& blueLine);
//! Check if polygon red and polygon blue are equal
template<>
TL_DLL bool TeEquals(const TePolygon& redPol, const TePolygon& bluePol);
//! Check if polygonset1 and polygonset1 are equal
template<>
TL_DLL bool TeEquals( const TePolygonSet& ps1, const TePolygonSet& ps2 );
//! Check if box 1 and box 2 are equal
template<>
TL_DLL bool TeEquals(const TeBox& bx1, const TeBox& bx2);
//! Check if cell 1 and cell 2 are equal
template<>
TL_DLL bool TeEquals(const TeCell& cell1, const TeCell& cell2);
/** @} */
/** @defgroup TeDisjoint Disjoint test
@ingroup TopologicalOperators
Check if two objects are disjoint.
\verbatim
Applies to all geometries.
TeDisjoint(x, y) => (x inter y = false)
(I(x) inter I(y) = false) ^ (I(x) inter B(y) = false) ^ (B(x) inter I(y) = false) ^ (B(x) inter B(y) = false)
\endverbatim
@{
*/
template<class T1, class T2>
inline bool TeDisjoint(const T1& o1, const T2& o2)
{
return TeDisjoint(o2, o1);
}
//! Check if coordinate cl and coordinate c2 are disjoint
TL_DLL bool TeDisjoint(const TeCoord2D& c1, const TeCoord2D& c2);
//! Check if coordinate and box are disjoint
TL_DLL bool TeDisjoint(const TeCoord2D& c, const TeBox& b);
//! Check if box 1 and box 2 are disjoint
TL_DLL bool TeDisjoint(const TeBox& bx1, const TeBox& bx2);
//! Check if coordinate and line are disjoint
TL_DLL bool TeDisjoint(const TeCoord2D& c, const TeLine2D& l);
//! Check if coordinate and polygon are disjoint
TL_DLL bool TeDisjoint(const TeCoord2D& c, const TePolygon& pol);
//! Check if point l and point 2 are disjoint
TL_DLL bool TeDisjoint(const TePoint& p1, const TePoint& p2);
//! Check if point and object are disjoint
TL_DLL bool TeDisjoint(const TePoint& p, const TeLine2D& l);
//! Check if point and object are disjoint
TL_DLL bool TeDisjoint(const TePoint& p, const TePolygon& pol);
//! Check if lines are disjoint
TL_DLL bool TeDisjoint(const TeLine2D& redLine, const TeLine2D& blueLine);
//! Check if line and polygon are disjoint
TL_DLL bool TeDisjoint(const TeLine2D& l, const TePolygon& pol);
//! Check if polygons are disjoint
TL_DLL bool TeDisjoint(const TePolygon& redPol, const TePolygon& bluePol);
//! Check if cell 1 and cell 2 are disjoint
TL_DLL bool TeDisjoint(const TeCell& cell1, const TeCell& cell2);
//! Check if cell and line are disjoint
TL_DLL bool TeDisjoint(const TeCell& cell, const TeLine2D& line);
//! Check if cell and polygon are disjoint
TL_DLL bool TeDisjoint(const TeCell& cell, const TePolygon& pol);
//! Check if cell and point are disjoint
TL_DLL bool TeDisjoint(const TeCell& cell, const TePoint& point);
/** @} */
/** @defgroup TeIntersects Intersects test
@ingroup TopologicalOperators
Check if one object intersects another object.
\verbatim
Applies to all geometries.
TeIntersects(x, y) => !TeDisjoint(x, y)
=> (I(x) inter I(y) = true) v (I(x) inter B(y) = true) v (B(x) inter I(y) = true) v (B(x) inter B(y) = true)
\endverbatim
@{
*/
//! If a specialized function is not used, returns the disjoint negation
template<class T1, class T2>
bool TeIntersects(const T1& o1, const T2& o2)
{
return !TeDisjoint(o1, o2);
}
//! Check if coordinate and box intersects
template<>
TL_DLL bool TeIntersects(const TeCoord2D& c, const TeBox& b);
//! Check if point and box intersects
template<>
TL_DLL bool TeIntersects(const TePoint& p, const TeBox& b);
//! Check if boxes intersects
template<>
TL_DLL bool TeIntersects(const TeBox& bx1, const TeBox& bx2);
/** @} */
/** @defgroup TeTouches Touch test
@ingroup TopologicalOperators
Check if two objects touches.
\verbatim
Applies to A/A, L/L, L/A, P/A, P/L.
TeTouches(x, y) => (I(x) inter I(y) = false) ^ (x inter y = true)
=> (I(x) inter I(y) = false) ^ ((B(x) inter I(y) = true) v (I(x) inter B(y) = true) v (B(x) inter B(y) = true))
\endverbatim
@{
*/
//! Check if coordinate and line touches
TL_DLL bool TeTouches(const TeCoord2D& c, const TeLine2D& l);
//! Check if coordinate and polygon touches
TL_DLL bool TeTouches(const TeCoord2D& c, const TePolygon& pol);
//! Check if point and object touches
TL_DLL bool TeTouches(const TePoint& p, const TeLine2D& l);
//! Check if point and object touches
TL_DLL bool TeTouches(const TePoint& p, const TePolygon& pol);
//! Check if line and line touches
TL_DLL bool TeTouches(const TeLine2D& redLine, const TeLine2D& blueLine);
//! Check if line and polygon
TL_DLL bool TeTouches(const TeLine2D& l, const TePolygon& pol);
//! Check if polygons touches
TL_DLL bool TeTouches(const TePolygon& redPol, const TePolygon& bluePol);
//! Check if boxes touches
TL_DLL bool TeTouches(const TeBox& bx1, const TeBox& bx2);
//! Check if cells touches
TL_DLL bool TeTouches(const TeCell& c1, const TeCell& c2);
//! Check if cell and line touches
TL_DLL bool TeTouches(const TeLine2D& line, const TeCell& cell);
//! Check if cell and polygon touches
TL_DLL bool TeTouches(const TeCell& c1, const TePolygon& poly);
//! Check if cell and point touches
TL_DLL bool TeTouches( const TePoint& point, const TeCell& c1);
/** @} */
/** @defgroup TeCrosses Crosses test
@ingroup TopologicalOperators
Check if one object crosses another object.
\verbatim
TeCrosses(x, y) => dim(I(x) inter I(y)) = (max(dim(I(x)), dim(I(y))) - 1) ^ (x inter y != x) ^ (x inter y != y)
Case 1: x = TeLine2D and y = TePolygon
=> (I(x) inter I(y) = true) ^ (I(x) inter E(y) = true)
Case 2: x = TeLine2D and y = TeLine2D
=> dim(I(x) inter I(y)) = 0
\endverbatim
@{
*/
//! Check if red line crosses blue line
TL_DLL bool TeCrosses(const TeLine2D& redLine, const TeLine2D& blueLine);
//! Check if line crosses polygon
TL_DLL bool TeCrosses(const TeLine2D& l, const TePolygon& pol);
//! Check if line and cell crosses
TL_DLL bool TeCrosses(const TeLine2D& l, const TeCell& cell);
/** @} */
/** @defgroup TeWithin Within test
* @ingroup TopologicalOperators
* Check if one object is within another object.
\verbatim
TeWithin(x, y) => (x inter y = x) ^ (I(x) inter I(y) = true)
Case 1: P/P, P/L and P/A
=> (I(x) inter I(y) = true)
Case 2: L/L and A/A
=> (I(x) inter I(y) = true) ^ (I(x) inter E(y) = false) ^ (B(x) inter E(y) = false) ^ (B(x) inter B(y) = false)
Case 3: L/A
=> (I(x) inter I(y) = true) ^ (I(x) inter E(y) = false) ^ (B(x) inter E(y) = false) ^ (B(x) inter B(y) = false) ^ (I(x) inter B(y) = false)
\endverbatim
@{
*/
//! Check if coordinate 1 is within coordinate 2
TL_DLL bool TeWithin(const TeCoord2D& c1, const TeCoord2D& c2);
//! Check if coordinate is within a box
TL_DLL bool TeWithin(const TeCoord2D& c, const TeBox& b);
//! Check if a cordinate is within a line
TL_DLL bool TeWithin(const TeCoord2D& c, const TeLine2D& l);
//! Check if a cordinate is within a polygon
TL_DLL bool TeWithin(const TeCoord2D& c, const TePolygon& pol);
//! Check if point 1 is within point 2
TL_DLL bool TeWithin(const TePoint& p1, const TePoint& p2);
//! Check if point is within object
TL_DLL bool TeWithin(const TePoint& p, const TeLine2D& l);
//! Check if point is within object
TL_DLL bool TeWithin(const TePoint& p, const TePolygon& pol);
//! Check if red line is within blue line
TL_DLL bool TeWithin(const TeLine2D& redLine, const TeLine2D& blueLine);
//! Check if line is within polygon
TL_DLL bool TeWithin(const TeLine2D& l, const TePolygon& pol);
//! Check if red polygon is within blue polygon
TL_DLL bool TeWithin(const TePolygon& redPol, const TePolygon& bluePol);
//! Check if box1 is within box2
TL_DLL bool TeWithin(const TeBox& bx1, const TeBox& bx2);
//! Check if cell1 is within cell2
TL_DLL bool TeWithin(const TeCell& cell1, const TeCell& cell2);
//! Check if line is within cell
TL_DLL bool TeWithin(const TeLine2D& line, const TeCell& cell);
//! Check if cell is within polygon
TL_DLL bool TeWithin(const TeCell& cell, const TePolygon& poly);
//! Check if point is within cell
TL_DLL bool TeWithin(const TePoint& point, const TeCell& cell);
/** @} */
/** @defgroup TeContains Contains test
@ingroup TopologicalOperators
Check if one object contains another object.
TeContains(x, y) = TeWithin(y, x)
@{
*/
//! If a specialized function is not used, returns false
template<class T1, class T2>
inline bool TeContains(const T1& o1, const T2& o2)
{
return TeWithin(o2, o1);
}
/** @} */
/** @defgroup TeOverlaps Overlaps test
@ingroup TopologicalOperators
Check if one object overlaps another object.
\verbatim
TeOverlaps(x, y) => (dim(I(x)) = dim(I(y)) = dim(I(x) inter I(y))) ^ (x inter y != x) ^ (x inter y != y)
Case 1: (x = TePolygon and y = TePolygon)
=> (I(x) inter I(y) = true) ^ (I(x) inter E(y) = true) ^ (E(x) inter I(y) = true)
Case 2: x = TeLine2D and y = TeLine2D
=> (dim(I(x) inter I(y)) = 1) ^ (I(x) inter E(y) = true) ^ (E(x) inter I(y) = true)
\endverbatim
@{
*/
//! Check if red red overlaps blue line
TL_DLL bool TeOverlaps(const TeLine2D& redLine, const TeLine2D& blueLine);
//! Check if red polygon overlaps blue polygon
TL_DLL bool TeOverlaps(const TePolygon& redPol, const TePolygon& bluePol);
//! Check if cell1 overlaps cell2
TL_DLL bool TeOverlaps(const TeCell& cell1, const TeCell& cell2);
//! Check if cell overlaps polygon
TL_DLL bool TeOverlaps(const TeCell& cell, const TePolygon& poly);
/** @} */
/** @defgroup TeCoveredBy Covered by test
@ingroup TopologicalOperators
Check if one object is covered by another object.
\verbatim
TeCoveredBy(x, y) => (x inter y = x) ^ (I(x) inter I(y) = true)
- Case 1: (x = TePolygon and y = TePolygon) or (x = TeLine2D and y = TeLine2D)
=> (I(x) inter I(y) = true) ^ (I(x) inter E(y) = false) ^ (B(x) inter E(y) = false) ^ (B(x) inter B(y) = true)
- Case 2: x = TeLine2D and y = TePolygon
=> (I(x) inter I(y) = true) ^ (I(x) inter E(y) = false) ^ (B(x) inter E(y) = false) ^ ((B(x) inter B(y) = true) v (I(x) inter B(y) = true))
\endverbatim
@{
*/
//! Check if red line is covered by blue line
TL_DLL bool TeCoveredBy(const TeLine2D& redLine, const TeLine2D& blueLine);
//! Check if line is covered by polygon
TL_DLL bool TeCoveredBy(const TeLine2D& l, const TePolygon& pol);
//! Check if red polygon is covered by blue polygon
TL_DLL bool TeCoveredBy(const TePolygon& redPol, const TePolygon& bluePol);
//! Check if cell1 is covered by cell2
TL_DLL bool TeCoveredBy(const TeCell& cell1, const TeCell& cell2);
//! Check if polygon is covered by cell
TL_DLL bool TeCoveredBy(const TePolygon& poly, const TeCell& cell);
//! Check if line is covered by cell
TL_DLL bool TeCoveredBy(const TeLine2D& line, const TeCell& cell);
/** @} */
/** @defgroup TeCovers Covers test
@ingroup TopologicalOperators
Check if one object covers another object.
TeCovers(x, y) => TeCoveredBy(y, x)
@{
*/
//! Check if one object covers another object
template<typename T1, typename T2>
inline bool TeCovers(T1& o1, T2& o2)
{
return TeCoveredBy(o2, o1);
}
/** @} */
/** @defgroup TeRelation Relation test
* @ingroup TopologicalOperators
* Return the relation between two objects.
* @{
*/
/** \brief Returns the relation between coordinate c and line l.
\param c The coordinate.
\param l The line.
\return one of the relations: INSIDE, OUTSIDE or BOUNDARY.
\note It doesn't do box elimination, just uses from TeIsOnLine(coordinate, line) elimination
*/
TL_DLL short TeRelation(const TeCoord2D& c, const TeLine2D& l);
/** \brief Point in polygon inside/outside/boundary code.
\param c The coordinate to test.
\param r The simple polygon to test.
\return one of the relations: INSIDE, OUTSIDE or BOUNDARY.
\note The ring is treated as a simple polygon (no holes). Does box elimination.
*/
TL_DLL short TeRelation(const TeCoord2D& c, const TeLinearRing& r);
/** \brief Coordinate in polygon inside/outside/boundary code.
\param c The coordinate to test.
\param pol The polygon to test.
\return one of the relations: INSIDE, OUTSIDE or BOUNDARY.
\note It doesn't do box elimination, just uses from TeRelation(coordinate, line) elimination
*/
TL_DLL short TeRelation(const TeCoord2D& c, const TePolygon& pol);
/** \brief Point in polygon inside/outside/boundary code.
\param p The coordinate to test.
\param pol The polygon to test.
\return one of the relations: INSIDE, OUTSIDE or BOUNDARY.
\note It doesn't do box elimination, just uses from TeRelation(coordinate, line) elimination
*/
TL_DLL short TeRelation(const TePoint& p, const TePolygon& pol);
/** \brief Point in polygon set inside/outside/boundary code.
\param c The coordinate to test.
\param pSet The polygon set to test.
\return one of the relations: INSIDE, OUTSIDE or BOUNDARY.
\note Does box elimination.
*/
TL_DLL short TeRelation(const TeCoord2D& c, const TePolygonSet& pSet);
/** \brief This function returns the relation between two lines.
\param lRed The first line.
\param lBlue The second line.
\param relation To return the relation that stop the search: TeDISJOINT, TeTOUCHES, TeWITHIN, TeCONTAINS, TeCROSSES, TeOVERLAPS, TeCOVEREDBY, TeCOVERS, TeEQUALS
\note Doesn't do box elimination. You must implement the test in your own functions.
*/
TL_DLL short TeRelation(const TeLine2D& lRed, const TeLine2D& lBlue, const short& relation);
/** \brief This function returns the relation between a line and a polygon.
\param line The line.
\param pol The polygon.
\return one of the relations: TeDISJOINT, TeTOUCHES, TeWITHIN (THE LINE IS WITHIN), TeCROSSES, TeCOVEREDBY (THE LINE IS COVERED BY).
\note Doesn't do box elimination. You must implement the test in your own functions.
*/
TL_DLL short TeRelation(const TeLine2D& line, const TePolygon& pol);
/** \brief This function returns the relation between two polygons.
\param pRed The first polygon.
\param pBlue The second polygon.
\return one of the relations: TeEQUALS, TeDISJOINT, TeTOUCHES, TeWITHIN (pRed IS WITHIN pBlue), TeCONTANS (pBlue CONTAINS pRed), TeOVERLAPS, TeCOVEREDBY (pRed IS COVERED BY pBlue) or TeCOVERS (pRed COVERS pBlue).
\note Doesn't do box elimination. You must implement the test in your own functions.
*/
TL_DLL short TeRelation(const TePolygon& pRed, const TePolygon& pBlue);
/** @} */
/** @} */
/** @defgroup BoxTests Special box tests
* @ingroup GeometryAlgorithms
* Box tests.
* @{
*/
//! Check if box1 is DISJOINT or TOUCHes box2
TL_DLL bool TeDisjointOrTouches(const TeBox& bx1, const TeBox& bx2);
//! Check if coordinate c is WITHIN or TOUCHes segments c1 and c2
TL_DLL bool TeWithinOrTouches(const TeCoord2D& c, const TeCoord2D& c1, const TeCoord2D& c2);
/** @} */
/** @defgroup GeometryTests Special Geometry tests
* @ingroup GeometryAlgorithms
* Geometry tests.
* @{
*/
//! Check if geom1 is WITHIN, COVERED BY or EQUAL to geom2
template<class T1, class T2>
bool TeWithinOrCoveredByOrEquals(const T1& geom1, const T2& geom2)
{
short rel = TeRelation(geom1, geom2);
if((rel&TeINSIDE) || (rel&TeBOUNDARY))
return true;
return false;
}
//! Check if box1 is WITHIN, COVERED BY or EQUAL to box2
template<>
TL_DLL bool TeWithinOrCoveredByOrEquals(const TeBox& bx1, const TeBox& bx2);
//! Check if line1 is WITHIN, COVERED BY or EQUAL to line2
template<>
TL_DLL bool TeWithinOrCoveredByOrEquals(const TeLine2D& line1, const TeLine2D& line2);
//! Check if line1 is WITHIN or COVERED BY to pol
template<>
TL_DLL bool TeWithinOrCoveredByOrEquals(const TeLine2D& line1, const TePolygon& pol);
//! Check if pol1 is WITHIN, COVERED BY or EQUAL to pol2
template<>
TL_DLL bool TeWithinOrCoveredByOrEquals(const TePolygon& pol1, const TePolygon& pol2);
/** @} */
/** @defgroup IntersectionOperators Intersection Operators
* @ingroup GeometryAlgorithms
* Functions that calculate the intersection among objects or do intersection test.
* @{
*/
/** \brief Performs the intersection between box b1 and b2, returning the resulting box bout.
\param bx1 The first box to do the intersection.
\param bx2 The second box to do the intersection.
\param bout The box formed by the intersection of bx1 and bx2.
*/
TL_DLL bool TeIntersection(const TeBox& bx1, const TeBox& bx2, TeBox& bout);
/** \brief Returns the segments that intersept the poly polygon in the line y.
\param poly A polygon.
\param y The ordinate that cuts the polygons edges.
*/
TL_DLL TeCoordPairVect TeGetIntersections(const TePolygon &poly, const double& y);
/** @} */
/** @defgroup UnionOperators Union Operators
* @ingroup GeometryAlgorithms
* Functions that compute the union of objects.
* @{
*/
/** \brief Combine two box, make one that includes both.
\param bx1 The first box to do the union.
\param bx2 The second box to do the union.
*/
TL_DLL TeBox TeUnion(const TeBox& bx1, const TeBox& bx2);
/** @} */
/** @defgroup TeLocationFunctions Functions that finds the localization of objects.
* @ingroup GeometryAlgorithms
* Functions that finds the localization of objects.
* @{
*/
/** \brief Point in polygon inside/outside/boundary code.
\param c The coordinate to test.
\param r The simple polygon to test.
\note Check if point is INSIDE of a given ring.
The ring is treated as a simple polygon (no holes).
Adapted from:
Samosky, Joseph, "SectionView: A system for interactively specifying and
visualizing sections through three-dimensional medical image data,
M.S. Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 1993.
Obs: Doesn't do box elimination.
*/
TL_DLL bool TePointInPoly(const TeCoord2D& c, const TeLinearRing& r);
/** \brief Check if coordinate c is on segment (segment is closed).
\param c The coordinate to be tested.
\param c1 The first segment's coordinate.
\param c2 The second segment's coordinate.
*/
TL_DLL bool TeIsOnSegment(const TeCoord2D& c, const TeCoord2D& c1, const TeCoord2D& c2);
/** \brief Check if coordinate c is on line boundary or on line interior (see explanation above for definition of boundary and interior of a line).
\param c The coordinate to be tested.
\param l The line used in the test.
Obs: Do box elimination.
*/
TL_DLL bool TeIsOnLine(const TeCoord2D& c, const TeLine2D& l);
/** \brief Locate the nearest line segment of a coordinate.
\param pin The coordinate.
\param line The line.
\param segment The position of the segment in the line
\param tol Tolerance.
*/
TL_DLL bool TeLocateLineSegment(TeCoord2D& pin, TeLine2D& line, int& segment, double tol = 0.0);
/** @} */
/** @defgroup TeConvexHull Functions to compute the Convex Hull
* @ingroup GeometryAlgorithms
* Functions that returns the convex hull of a point list.
* @{
*/
/** \brief Returns the convexhull of a given list of coords in counterclockwise.
\param coordSet A list with coordinates without duplicated coordinates.
\note This algorithm is based on the book Computational Geometry
by M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf - Springer Verlag - pp. 6.
It is O(N log N).
*/
template<class T>
TePolygon TeConvexHull(const T& coordSet);
//! This is a explicit specialization that returns the convex hull of a TePolygon
template<>
TL_DLL TePolygon TeConvexHull(const TePolygon& p);
//! This is a explicit specialization that returns the convex hull of a TePolygonSet
template<>
TL_DLL TePolygon TeConvexHull(const TePolygonSet& ps);
//! This is a explicit specialization that returns the convex hull of a TePointSet. Must be defined!
template<>
TL_DLL TePolygon TeConvexHull(const TePointSet& ps);
/** @} */
/** @defgroup TeUtils Utilities functions.
* @ingroup GeometryAlgorithms
* @{
*/
//! Given a projection "proj" returns a tolerance value in the same unit of projection to be used in geometric operations
TL_DLL double TeGetPrecision(TeProjection* proj);
//! This class implements the Epsilon-tweaking used in calculus.
class TL_DLL TeGeometryAlgorithmsPrecision
{
protected:
//! Constructor
TeGeometryAlgorithmsPrecision();
public:
//! Tells if d1 is greater than d2 according to tolerance factor.
static bool IsGreater(const double& d1, const double& d2)
{
return ((d1 - d2) > TePrecision::instance().precision());
}
//! Tells if d1 is greater than or equal to d2 according to tolerance factor.
static bool IsGreaterEqual(const double& d1, const double& d2)
{
return ((d1 - d2) >= (-TePrecision::instance().precision()));
}
//! Tells if d1 is smaller than d2 according to a tolerance factor.
static bool IsSmaller(const double& d1, const double& d2)
{
return ((d1 - d2) < -(TePrecision::instance().precision()));
}
//! Tells if d1 is smaller than or equals to d2 according to a tolerance factor.
static bool IsSmallerEqual(const double& d1, const double& d2)
{
return ((d1 - d2) <= TePrecision::instance().precision());
}
//! Tells if d1 is equals to d2 according to a tolerance factor.
static bool IsEqual(const double& d1, const double& d2)
{
return (fabs(d1 - d2) <= TePrecision::instance().precision());
}
//! Tells if d1 is different from d2 according to a tolerance factor.
static bool IsDifferent(const double& d1, const double& d2)
{
return (fabs(d1 - d2) > TePrecision::instance().precision());
}
};
//! Removes the duplicate coordinates of a line
TL_DLL inline void TeRemoveDuplicatedCoordinates(TeLine2D& l)
{
for(unsigned int i = 0; i < l.size() - 1; ++i)
if(TeEquals(l[i], l[i + 1]))
{
l.erase(i);
--i;
}
return;
}
//! Removes the duplicate coordinates of a polygon
TL_DLL inline void TeRemoveDuplicatedCoordinates(TePolygon& p)
{
for(unsigned int i = 0; i < p.size(); ++i)
TeRemoveDuplicatedCoordinates(p[i]);
return;
}
/** \brief Reverses the orientation of a line.
\param lin The line to be reversed.
*/
TL_DLL inline void TeReverseLine(TeLine2D& lin)
{
for(unsigned int i=0,j=lin.size()-1 ; i<lin.size()/2 ; ++i,--j)
{
TeCoord2D p = lin[i];
lin[i] = lin[j];
lin[j] = p;
}
return;
}
/** \brief Verifies if a simple polygon defined as a linear ring is convex or not.
\param ring The polygon to test convexity.
*/
TL_DLL bool TeIsConvex(const TeLinearRing& ring);
/** \brief Returns the orientation of the ring (CLOCKWISE or COUNTERCLOCKWISE);
\param r The ring to be checked.
*/
TL_DLL short TeOrientation(const TeLinearRing& r);
/** @} */
/** @defgroup MetricOperators Metric operators
* @ingroup GeometryAlgorithms
* Functions that do some usefull metric operations.
* @{
*/
/** \brief Returns the middle point of a segment.
\param first The first segment's coordinate.
\param last The second segment's coordinate.
\param middle The middle point.
*/
TL_DLL void TeGetMiddlePoint(const TeCoord2D& first, const TeCoord2D& last, TeCoord2D& middle);
/** \brief Calculates the Euclidian distance between two points.
\param c1 First coordinate;
\param c2 Second coordinate;
*/
TL_DLL double TeDistance(const TeCoord2D& c1, const TeCoord2D& c2);
/** \brief Returns the length of a Line 2D.
\param l The line to calculate the length.
*/
TL_DLL double TeLength(const TeLine2D& l);
/** \brief Perpendicular distance from point to segment.
\param first The first segment's coordinate.
\param last The second segment's coordinate.
\param pin The point to get the distance from the segment.
\param pinter The point of intersection on the segment.
*/
TL_DLL double TePerpendicularDistance(const TeCoord2D& first, const TeCoord2D& last, const TeCoord2D& pin, TeCoord2D &pinter);
/** \brief Minimal distance from point to segment.
\param first The first segment's coordinate.
\param last The second segment's coordinate.
\param pin The point to get the minimal distance from the segment. This point is inside the segment
\param pout The nearest segment point of the pin point.
\param tol Numerical tolerance
*/
TL_DLL double TeMinimumDistance (const TeCoord2D& first, const TeCoord2D& last, const TeCoord2D& pin, TeCoord2D& pout, double tol = 0.0);
/** \brief Template class to compute the area of a geometry
\param geom The geometry whose area we want to known.
\note This algorithm is based on the book Spatial Databases with Application to GIS
by Philippe Rigaux, Michel O. Scholl and Agnes Voisard.
*/
template<class T>
double TeGeometryArea(const T& /* geom */)
{
return 0.0;
}
//! This is a explicit specialization that returns the area of a TePolygon
template<>
TL_DLL double TeGeometryArea(const TePolygon& p);
//! This is a explicit specialization that returns the area of a TePolygonSet
template<>
TL_DLL double TeGeometryArea(const TePolygonSet& ps);
//! This is a explicit specialization that returns the area of a Box
template<>
TL_DLL double TeGeometryArea(const TeBox& b);
//! This is a explicit specialization that returns the area of a Box
template<>
TL_DLL double TeGeometryArea(const TeMultiGeometry& mGeom);
/** @} */
/** @defgroup GeometryFunction Functions that return geometries.
* @ingroup GeometryAlgorithms
* Functions that return geometries.
* @{
*/
/** \brief Given a box return its polygon representation.
\param b The box to create a polygon.
*/
TL_DLL TePolygon TeMakePolygon(const TeBox& b);
/** \brief Given N points, finds a path that doesn't self-intersects
\note Given N points, finds a path that doesn't self-intersects, visiting all points and returning
to the begginning one. It is based on the book Algorithms by Robert Sedgewick, Addisson-Wesley, 1988;
\param pSet The point set to form a path.
*/
TL_DLL TeLinearRing TeSimpleClosedPath(const TePointSet& pSet);
/** @} */
/** @defgroup TeFindCentroid Functions to compute the centroid
* @ingroup GeometryAlgorithms
* Functions that return the centroid.
* @{
*/
/** \brief Calculates the centroid of a multi geometry.
\param p A multi geometry whose centroid we want to known.
*/
TL_DLL TeCoord2D TeFindCentroid(TeMultiGeometry& mGeom);
/** \brief Calculates the centroid of a polygon.
\param p A TePolygon whose centroid we want to known.
*/
TL_DLL TeCoord2D TeFindCentroid(const TePolygon& p);
/** \brief Calculates a reference point.
\param l A TeLine whose centroid we want to known.
*/
TL_DLL TeCoord2D TeFindCentroid(const TeLine2D& l);
/*! \fn TeCoord2D TeFindCentroid(const TeCell& c );
\brief Calculates the centroid of a cell.
\param c A TeCell whose centroid we want to known.
*/
TL_DLL TeCoord2D TeFindCentroid(const TeCell& c);
/** \brief Calculates the centroid of a point.
\param p A TePoint whose centroid we want to known.
*/
TL_DLL TeCoord2D TeFindCentroid(const TePoint& p);
/** \brief Calculates the centroid of a text.
\param t A TeText whose centroid we want to known.
*/
TL_DLL TeCoord2D TeFindCentroid(const TeText& t);
/** \brief Calculates the centroid of a polygon set.
\param s A TePolygon set whose centroid we want to known.
*/
TL_DLL TeCoord2D TeFindCentroid(const TePolygonSet& s);
/** Calculates the centroid of a line set.
\param s A TeLine set whose centroid we want to known.
*/
TL_DLL TeCoord2D TeFindCentroid(const TeLineSet& s);
/** \brief Calculates the centroid of a cell set.
\param s A TeCell set whose centroid we want to known.
*/
TL_DLL TeCoord2D TeFindCentroid(const TeCellSet& s);
/** \brief Calculates the centroid of a point set.
\param ps A TePointSet set whose centroid we want to known.
*/
TL_DLL TeCoord2D TeFindCentroid(TePointSet& ps);
/** \brief Calculates the centroid of a text set.
\param ts A TeTextSet set whose centroid we want to known.
*/
TL_DLL TeCoord2D TeFindCentroid(TeTextSet& ts);
/** \brief Calculates the center of a triangle.
\param vert0 First triagle's vertex.
\param vert1 Second triagle's vertex.
\param vert2 Third triagle's vertex.
\param pc The triangle center.
*/
TL_DLL bool TeFindTriangleCenter(const TeCoord2D& vert0, const TeCoord2D& vert1, const TeCoord2D& vert2, TeCoord2D& pc);
/** \brief Calculates intersection between two segments.
\param fr0 First point of first segment.
\param to0 Second point of first segment.
\param fr1 First point of second segment.
\param to1 Second point of second segment.
\param pi The intersection point coordinates.
\return true is intersects, false otherwise.
*/
TL_DLL bool TeSegmentsIntersectPoint(const TeCoord2D& fr0, const TeCoord2D& to0, const TeCoord2D& fr1, const TeCoord2D& t1, TeCoord2D& pi);
/** @} */
/** @defgroup TeNearest Functions to compute the nearest part of an object to a point.
* @ingroup GeometryAlgorithms
* Auxiliary functions.
* @{
*/
//! Nearest node in set from location pt (i = the node index in the nodeset)
TL_DLL bool TeNearest(TeCoord2D& pt, TeNodeSet& ns , int& i, const double& tol = 0.0);
//! Nearest point in set from location pt (i = the point index in the pointset)
TL_DLL bool TeNearest(TeCoord2D& pt, TePointSet& ps , int& i, const double& tol = 0.0);
//! Nearest text in set from location pt (i = the text index in the textset)
TL_DLL bool TeNearest(TeCoord2D& pt, TeTextSet& ts , int& i, const double& tol = 0.0);
//! Nearest line in set from location pt (i = the line index in the lineset and pi = the closest point)
//! The pi point can be outside a line of the line set
TL_DLL bool TeNearest(TeCoord2D& pt, TeLineSet& ls , int& i, TeCoord2D& pi, const double& tol = 0.0);
//! Nearest line in set from location pt (i = the line index in the lineset and pout = the closest point)
//! The pout point must be inside a line of the line set
TL_DLL bool TeNearest (TeCoord2D& pt,TeLineSet& ls, int& lindex, TeCoord2D& pout, double& dmin, const double& tol = 0.0);
//! Nearest polygon in set from location pt (i = the polygon index in the polygonset).
TL_DLL bool TeNearest(TeCoord2D& pt, TePolygonSet& ps , int& i, const double& tol = 0.0);
//! Nearest line in set from location pt (i = the line index in lineset) calculated by the vertex of the lines
TL_DLL bool TeNearestByPoints(TeCoord2D& pt, TeLineSet& ls , int& i, double& dist, const double& tol = 0.0);
/** @} */
/** @defgroup CurveFunctions Functions used to deal with smooth curves
* @ingroup GeometryAlgorithms
* @{
*/
/** \brief Given three points of a circunference, returns its center point.
\param p1 First point.
\param p2 Second point.
\param p3 Third point.
\param center Circunference center.
This algorithm is adapted from http://www.delphiforfun.org/Programs/Math_Topics/circle_from_3_points.htmbook.
*/
TL_DLL bool TeGetCenter(TePoint p1, TePoint p2, TePoint p3, TePoint ¢er);
/** \brief Given three points of a circunference, returns the radius.
\param p1 First point.
\param p2 Second point.
\param p3 Third point.
This algorithm is adapted from http://www.delphiforfun.org/Programs/Math_Topics/circle_from_3_points.htmbook.
*/
TL_DLL double TeGetRadius(TePoint &p1, TePoint &p2, TePoint &p3);
/** \brief Given three points returns a smooth arc as a TeLine2D that contains a given total number of points.
\param p1 First point.
\param p2 Second point.
\param p3 Third point.
\param arcOut The return arc.
\param NPoints Number of arc points.
This algorithm is adapted from http://mathforum.org/dr.math/
*/
TL_DLL bool TeGenerateArc(TePoint& p1, TePoint& p2, TePoint& p3, TeLine2D& arcOut, const short& NPoints);
/** \brief Given a center point and a radius, returns the circle as a TeLine2D interpolated by a given number of points
\param center Center point of the circle.
\param radius radius of the circle.
\param circle The return circle
\param NPoints Number of circle points.
*/
TL_DLL bool TeGenerateCircle(const TePoint& center, const double& radius, TeLine2D& circle, const short& NPoints);
/** \brief Performs a line simplication
\param line The line to be simplified
\param snap Simplification threshold
\param maxdist The maximum distance between intermediary segments
*/
TL_DLL bool TeLineSimplify(TeLine2D& line, double snap, double maxdist);
/** \brief Adjust Segment to specific distance
\param P0 first coordinate
\param P1 second coordinate
\param d0 distance value to adjust
\param P0out first coordinate adjusted
\param P1out second coordinate adjusted
\return returns true whether possible adjust segment
*/
TL_DLL bool TeAdjustSegment(TeCoord2D P0, TeCoord2D P1, double d0, TeCoord2D &P0out, TeCoord2D &P1out);
/** \brief Get middle line
Method like find Centroid but this method calculate the correct middle point
\param line The Line to calculate the middle point
\param p middle point
\return returns true case possible calculate the middle line
*/
TL_DLL bool TeFindCentroid(const TeLine2D &line, TeCoord2D &p);
/** @} */
/** @} */ // end of group GeometryAlgorithms
#endif // __TERRALIB_INTERNAL_GEOMETRYALGORITHMS_H
|