This file is indexed.

/usr/include/terralib/kernel/TeRedBlackTree.h is in libterralib-dev 4.0.0-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
/************************************************************************************
TerraLib - a library for developing GIS applications.
Copyright © 2001-2007 INPE and Tecgraf/PUC-Rio.

This code is part of the TerraLib library.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

You should have received a copy of the GNU Lesser General Public
License along with this library.

The authors reassure the license terms regarding the warranties.
They specifically disclaim any warranties, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose.
The library provided hereunder is on an "as is" basis, and the authors have no
obligation to provide maintenance, support, updates, enhancements, or modifications.
In no event shall INPE and Tecgraf / PUC-Rio be held liable to any party for direct,
indirect, special, incidental, or consequential damages arising out of the use
of this library and its documentation.
*************************************************************************************/
/*! \file  TeRedBlackTree.h
    \brief This file contains structures and definitions for a balanced binary search tree.
    \author Gilberto Ribeiro de Queiroz <gribeiro@dpi.inpe.br>
*/

#ifndef  __TERRALIB_INTERNAL_RED_BLACK_TREE_H
#define  __TERRALIB_INTERNAL_RED_BLACK_TREE_H

//STL's include
#include <string>

//TerraLib's include
#include "TeUtils.h"

using namespace std;

#define PRINT

/** @brief Contains structures and definitions necessary to deal with a balanced Binary Search Tree
*/
namespace TeREDBLACK
{

	//! Possible values for a node color in a red-black tree
	enum TeRBNodeColor { TeREDNODE, TeBLACKNODE };

	//! Template class for nodes in a Red-Black tree.
	/*!
		This class contains the common attributes to a node
		used by a binary tree. Only used for commom binary trees,
		if you want a more sophisticated tree, you can continue
		using the Red-Black Tree framework defined below, it is possible
		taking care of some default attributes that a node must
		have to implement (left_, right_, parent_, data_).
	*/
	template<class T>
	class TeRedBlackNode
	{
		public:

			//! Export node's data type.
			typedef T TeRedBlackNodeData;

			//! Node's data.
			T data_;

			//! Pointer to the left sub-tree.
			TeRedBlackNode* left_;

			//! Pointer to the right sub-tree.
			TeRedBlackNode* right_;

			//! Pointeir to the father's node.
			TeRedBlackNode* parent_;

			//! Node's color (RED or BLACK).
			TeRBNodeColor color_;

			//! Constructor.
			TeRedBlackNode(const TeRBNodeColor& color = TeREDNODE)
				: left_(0), right_(0), parent_(0), color_(color)
			{
			}

			//! Constructor.
			TeRedBlackNode(T& d, const TeRBNodeColor& color = TeREDNODE)
				: data_(d), left_(0), right_(0), parent_(0), color_(color)
			{
			}


		private:

			//! No copy allowed
			TeRedBlackNode(const TeRedBlackNode& other);

			// No copy allowed
			TeRedBlackNode& operator=(const TeRedBlackNode& other);
	};

	//! Template class for Red-Black trees.
	/*!
		This class contains the common operations in a Red-Black Tree.
		It can be used like a framework. Extend the methods like
		"Insert" and "Search" to walk and to do some usefull things.
		You will use the methods for Rotation, Insert Propagation,
		Delete Propagation, Sucessor, Predecessor, IsEmpty, Clear.
		This tree is based on the algorithm of Cormen's book. The only difference is
		when a node being deleted has two children its successor node is relinked into its place,
		rather than copied, so that the only iterators invalidated are those referring to the deleted node.
		Every data used in nodes must implements a ToString() method.
	*/
	template<class NODE>
	class TeRBTree
	{
		private:

			//! No copy allowed.
			TeRBTree(const TeRBTree& other);

			//! No copy allowed.
			TeRBTree& operator=(const TeRBTree& other);

		protected:

			NODE* nil_;		//!< Reference node.			
			NODE* root_;	//!< Tree's root.			
			unsigned int nodeCount_;	//!< Count the number of nodes in the tree (excluding nil_ node).

		public:

			//! Export node type.
			typedef NODE* REDBLACKNODEPOINTER;

			//! Export node data type.
			typedef typename NODE::TeRedBlackNodeData TeRedBlackNodeData;

			//! Constructor.
			TeRBTree()
				: nodeCount_(0)
			{
				nil_ = new NODE();
				nil_->color_ = TeBLACKNODE;

				root_ = nil_;

			}

			//! Destructor.
			virtual ~TeRBTree()
			{
				Clear();

				if(nil_)
					delete nil_;
			}

			//! Returns true if the tree is empty otherwise returns false.
			bool IsEmpty(void) const
			{
				return root_ == nil_;
			}

			//! Returns the number of nodes in the tree, excluding the nil_ one.
			unsigned int Size(void) const
			{
				return nodeCount_;
			}

			//! Removes the node from the tree and do rebalancing.
			virtual void Delete(NODE* z)
			{
				if(z)
				{
					// z has at most one non-null child. y == z.
					// x might be null.
					// z has exactly one non-null child.  y == z.
					// x is not null.
					// z has two non-null children.  Set y to
					//   z's successor.  x might be null.
					NODE* y = ((z->left_ == nil_) || (z->right_ == nil_)) ? z : Successor(z);
					NODE* x = (y->left_  != nil_) ?  y->left_ : y->right_;
					NODE* x_parent = 0;

					if(y != z)	// relink y in place of z.  y is z's successor
					{
						z->left_->parent_ = y;
						y->left_ = z->left_;
						if(y != z->right_)
						{
							x_parent = y->parent_;

							if(x != nil_)
								x->parent_ = y->parent_;

							y->parent_->left_ = x;      // y must be a left child
							y->right_ = z->right_;
							z->right_->parent_ = y;
						}
						else
							x_parent = y;

						if(root_ == z)
							root_ = y;
						else
							if(z->parent_->left_ == z)
								z->parent_->left_ = y;
							else
								z->parent_->right_ = y;

						y->parent_ = z->parent_;

						TeRBNodeColor aux_color = y->color_;
						y->color_ = z->color_;
						z->color_ = aux_color;

						y = z;

						// y now points to node to be actually deleted
					}
					else
					{                        // y == z
						x_parent = y->parent_;
						if(x != nil_)
							x->parent_ = y->parent_;

						if(root_ == z)
							root_ = x;
						else
							if(z->parent_->left_ == z)
								z->parent_->left_ = x;
							else
								z->parent_->right_ = x;
					}

					if(y->color_ == TeBLACKNODE)
						DeleteFixUp(x, x_parent, root_);

					delete y;

					nodeCount_--;
				}

				return;
			}

			//! Returns the sucessor of a given node or zero if not.
			virtual NODE* Successor(NODE* x) const
			{
				if(x)
				{
					if(x->right_ != nil_)
					{
						x = x->right_;

						while(x->left_ != nil_)
							x = x->left_;

						return x;
					}

					NODE* y = x->parent_;

					while((y != nil_) && (x == y->right_))
					{
						x = y;
						y = y->parent_;
					}

					if(y == nil_)
						return 0;

					return y;
				}

				return 0;
			}

			//! Returns the predecessor of a given node or zero if not.
			virtual NODE* Predecessor(NODE* x) const
			{
				if(x)
				{
					if(x->left_ != nil_)
					{
						x = x->left_;

						while(x->right_ != nil_)
							x = x->right_;

						return x;
					}

					NODE* y = x->parent_;

					while((y != nil_) && (x == y->left_))
					{
						x = y;
						y = y->parent_;
					}

					if(y == nil_)
						return 0;

					return y;
				}

				return 0;
			}

			//! Returns the leftmost node in the tree, or zero if not.
			NODE* First(void) const
			{
				if(IsEmpty())
					return 0;

				NODE *x = root_;

				while(x->left_ != nil_)
					x = x->left_;

				return x;
			}

			//! Returns the rightmost node in the tree, or zero if not.
			NODE* Last(void) const
			{
				if(IsEmpty())
					return 0;

				NODE *x = root_;

				while(x->right_ != nil_)
					x = x->right_;

				return x;
			}

			//! Return the first element in the tree and removes it.
			virtual bool GetFirst(TeRedBlackNodeData& d)
			{
				NODE *x = First();

				if(x)
				{
						d = x->data_;

						Delete(x);

						return true;
				}

				return false;
			}

			//! Removes all nodes from the tree (excepty the nil node). Clear memory.
			void Clear(void)
			{
				if(!IsEmpty())
				{
					Erase(root_);

					root_ = nil_;
				}

				return;
			}

			//! Write the node's data to a file. The data must implement a methos called: void ToString(void).
			virtual void WriteToFile(const string& fileName) const
			{
				string strRepres = "";
		
				WriteToFile(root_, strRepres);

				TeWriteToFile(fileName, strRepres, "w");
				
				return;
			}

		protected:

			//! Left rotation.
			virtual void LeftRotate(NODE* x, NODE*& root)
			{
				NODE* y = x->right_;

				x->right_ = y->left_;
	
				if(y->left_ != nil_)
					y->left_->parent_ = x;

				y->parent_ = x->parent_;


				if(x == root)
					root = y;
				else
				{
					if(x == x->parent_->left_)
						x->parent_->left_ = y;
					else
						x->parent_->right_ = y;
				}

				y->left_ = x;
				x->parent_ = y;

				return;
			}

			//! Right rotation.
			virtual void RightRotate(NODE* y, NODE*& root)
			{
				NODE* x = y->left_;

				y->left_ = x->right_;

				if(x->right_ != nil_)
					x->right_->parent_ = y;

				x->parent_ = y->parent_;

				if(y == root)
					root = x;
				else
				{
					if(y == y->parent_->right_)
						y->parent_->right_ = x;
					else
						y->parent_->left_ = x;
				}

				x->right_ = y;
				y->parent_ = x;
			
				return;
			}

			//! Must be called after an insert, to fix-up the tree.
			void InsertFixUp(NODE*& n, NODE*& root)
			{
				n->color_ = TeREDNODE;

				NODE* y;
       
				while ((n != root) && (n->parent_->color_ == TeREDNODE))
				{
					if(n->parent_ == n->parent_->parent_->left_)	
					{											
						y = n->parent_->parent_->right_;			
						if(y->color_ == TeREDNODE)			
						{							
							n->parent_->color_ = TeBLACKNODE;
							y->color_ = TeBLACKNODE;
							n = n->parent_->parent_;
							n->color_ = TeREDNODE;
						}
						else
						{
							if(n == n->parent_->right_)
							{						
								n = n->parent_;		
								LeftRotate(n, root);
							}

							n->parent_->color_ = TeBLACKNODE;
							n->parent_->parent_->color_ = TeREDNODE;
							RightRotate(n->parent_->parent_, root);
						}
					}
					else
					{
						y = n->parent_->parent_->left_;
						if(y->color_ == TeREDNODE)
						{
							n->parent_->color_ = TeBLACKNODE;
							y->color_ = TeBLACKNODE;
							n = n->parent_->parent_;
							n->color_ = TeREDNODE;
						}
						else
						{
							if(n == n->parent_->left_)
							{
								n = n->parent_;
								RightRotate(n, root);
			                }

							n->parent_->color_ = TeBLACKNODE;
							n->parent_->parent_->color_ = TeREDNODE;
							LeftRotate(n->parent_->parent_, root);
						}
					}
				}

				root->color_ = TeBLACKNODE;

				return;
			}

			//! Must be called after a deletion, to fix-up the tree.
			void DeleteFixUp(NODE* x, NODE* x_parent, NODE*& root)
			{
				while((x != root) && (x == nil_ || x->color_ == TeBLACKNODE))
				{
					if(x == x_parent->left_)
					{
						NODE *w = x_parent->right_;

						if(w->color_ == TeREDNODE)
				        {
							w->color_ = TeBLACKNODE;
							x_parent->color_ = TeREDNODE;
							LeftRotate(x_parent, root);
							w = x_parent->right_;
				        }
		            
						if((w->left_ == nil_ || w->left_->color_ == TeBLACKNODE) && (w->right_ == nil_ || w->right_->color_ == TeBLACKNODE))
						{
							w->color_ = TeREDNODE;
							x = x_parent;
							x_parent = x_parent->parent_;
						}
						else
				        {
							if(w->right_ == nil_ || w->right_->color_ == TeBLACKNODE)
					        {
								if(w->left_ != nil_)
									w->left_->color_ = TeBLACKNODE;

								w->color_ = TeREDNODE;
								RightRotate(w, root);
								w = x_parent->right_;
						    }
						   
							w->color_ = x_parent->color_;
							x_parent->color_ = TeBLACKNODE;
							
							if(w->right_ != nil_)
								w->right_->color_ = TeBLACKNODE;

							LeftRotate(x_parent, root);

							break;
						}
					}
					else
				    {
						NODE* w = x_parent->left_;

						if(w->color_ == TeREDNODE)
				        {
							w->color_ = TeBLACKNODE;
							x_parent->color_ = TeREDNODE;
							RightRotate(x_parent, root);
							w = x_parent->left_;
						}
                
						if((w->left_ == nil_ || w->left_->color_ == TeBLACKNODE) && (w->right_ == nil_ || w->right_->color_ == TeBLACKNODE))
						{
							w->color_ = TeREDNODE;
							x = x_parent;
							x_parent = x_parent->parent_;
						}
						else
						{
							if(w->left_ == nil_ || w->left_->color_ == TeBLACKNODE)
				            {
								if(w->right_ != nil_)
									w->right_->color_ = TeBLACKNODE;

								w->color_ = TeREDNODE;
								LeftRotate(w, root);
								w = x_parent->left_;
							}
						
							w->color_ = x_parent->color_;
							x_parent->color_ = TeBLACKNODE;
							
							if(w->left_ != nil_)
								w->left_->color_ = TeBLACKNODE;

							RightRotate(x_parent, root);
							
							break;
						}
					}
				}

				if(x != nil_)
					x->color_ = TeBLACKNODE;
			}

			//! Only to be used by the public method, walking on the tree.
			virtual void WriteToFile(NODE* n, string& strRepres) const
			{
				if(n != nil_)
				{
					WriteToFile(n->left_, strRepres);

					strRepres += n->data_.ToString();
					strRepres += '\n';

					WriteToFile(n->right_, strRepres);
				}

				return;
			}	

			//! Removes the node and all node below it and doesn't do rebalancing. Used to free the memory.
			void Erase(NODE* n)
			{
				if(n != nil_)
				{
					Erase(n->left_);
					Erase(n->right_);

					delete n;

					nodeCount_--;
				}

				return;
			}

		public:

			//! Iterators class for the tree. It is used to abstract walking on the tree.
			template<class Node_i> class internal_iterator
			{
				protected:

					//! Pointer to the tree.
					TeRBTree<Node_i>* tree_;

					//! Pointer to the node.
					Node_i* node_;

				public:

					//! Makes iterator invalid
					void invalid(void)
					{
						node_ = 0;
						return;
					}

					//! Returns node pointer
					Node_i* getNode(void) const
					{
						return node_;
					}

				public:

					//! Constructor.
					internal_iterator()
						: node_(0), tree_(0)
					{						
					}
					
					//! Constructor
					internal_iterator(TeRBTree<Node_i>* tree, Node_i* n)
						: tree_(tree), node_(n)
					{
					}

					//! Destructor.
					virtual ~internal_iterator()
					{
					}

					//! Dereference operator.
					typename Node_i::TeRedBlackNodeData* operator->() const
					{
						return &node_->data_;
					}

					//! Dereference operator.
					typename Node_i::TeRedBlackNodeData& operator*() const
					{
						return node_->data_;
					}

					//! Operator ++ pre-fixed.
					internal_iterator& operator++()
					{
						node_ = tree_->Successor(node_);


						return *this;
					}

					//! Operator ++ pos-fixed
					internal_iterator operator++(int)	
					{
						internal_iterator temp = *this;
						++(*this);
						
						return temp;
					}

					//! Operator -- pre-fixed.
					internal_iterator& operator--()
					{
						node_ = tree_->Predecessor(node_);


						return *this;
					}

					//! Operator -- pos-fixed
					internal_iterator operator--(int)	
					{
						internal_iterator temp = *this;
						--(*this);
						return temp;
					}

					//! Operator ==.
					bool operator==(const internal_iterator& other) const
					{
						return (this->node_ == other.node_);
					}

					//! Operator !=.
					bool operator!=(const internal_iterator& other) const
					{
						return(this->node_ != other.node_);
					}
			};

			//! Exports iterator type.
			typedef internal_iterator<NODE> iterator;

			//! Returns an iterator to the leftmost node of the tree.
			iterator begin(void)
			{
				return iterator(this, First());
			}			

			//! Returns a reference iterator indicating the end of a tree.
			iterator end(void)
			{
				return iterator(this, 0);
			}

			//! Erases a node pointed by an interator.
			void erase(iterator& it)
			{
				Delete(it.getNode());

				it.invalid();

				return;
			}
	};

}		// end namespace TeREDBLACK
#endif	// __TERRALIB_INTERNAL_RED_BLACK_TREE_H