This file is indexed.

/usr/include/tesseract/trie.h is in libtesseract-dev 3.02.01-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/* -*-C-*-
 ********************************************************************************
 *
 * File:        trie.h  (Formerly trie.h)
 * Description:  Functions to build a trie data structure.
 * Author:       Mark Seaman, SW Productivity
 * Created:      Fri Oct 16 14:37:00 1987
 * Modified:     Fri Jul 26 11:26:34 1991 (Mark Seaman) marks@hpgrlt
 * Language:     C
 * Package:      N/A
 * Status:       Reusable Software Component
 *
 * (c) Copyright 1987, Hewlett-Packard Company.
 ** Licensed under the Apache License, Version 2.0 (the "License");
 ** you may not use this file except in compliance with the License.
 ** You may obtain a copy of the License at
 ** http://www.apache.org/licenses/LICENSE-2.0
 ** Unless required by applicable law or agreed to in writing, software
 ** distributed under the License is distributed on an "AS IS" BASIS,
 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 ** See the License for the specific language governing permissions and
 ** limitations under the License.
 *
 *********************************************************************************/
#ifndef TRIE_H
#define TRIE_H

#include "dawg.h"
#include "cutil.h"
#include "genericvector.h"

class UNICHARSET;

// Note: if we consider either NODE_REF or EDGE_INDEX to ever exceed
// max int32, we will need to change GenericVector to use int64 for size
// and address indices. This does not seem to be needed immediately,
// since currently the largest number of edges limit used by tesseract
// (kMaxNumEdges in wordlist2dawg.cpp) is far less than max int32.
// There are also int casts below to satisfy the WIN32 compiler that would
// need to be changed.
// It might be cleanest to change the types of most of the Trie/Dawg related
// typedefs to int and restrict the casts to extracting these values from
// the 64 bit EDGE_RECORD.
typedef inT64 EDGE_INDEX;  // index of an edge in a given node
typedef bool *NODE_MARKER;
typedef GenericVector<EDGE_RECORD> EDGE_VECTOR;

struct TRIE_NODE_RECORD {
  EDGE_VECTOR forward_edges;
  EDGE_VECTOR backward_edges;
};
typedef GenericVector<TRIE_NODE_RECORD *> TRIE_NODES;

namespace tesseract {

/**
 * Concrete class for Trie data structure that allows to store a list of
 * words (extends Dawg base class) as well as dynamically add new words.
 * This class stores a vector of pointers to TRIE_NODE_RECORDs, each of
 * which has a vector of forward and backward edges.
 */
class Trie : public Dawg {
 public:
  enum RTLReversePolicy {
    RRP_DO_NO_REVERSE,
    RRP_REVERSE_IF_HAS_RTL,
    RRP_FORCE_REVERSE,
  };

  // Minimum number of concrete characters at the beginning of user patterns.
  static const int kSaneNumConcreteChars = 4;
  // Various unicode whitespace characters are used to denote unichar patterns,
  // (character classifier would never produce these whitespace characters as a
  // valid classification).
  static const char kAlphaPatternUnicode[];
  static const char kDigitPatternUnicode[];
  static const char kAlphanumPatternUnicode[];
  static const char kPuncPatternUnicode[];
  static const char kLowerPatternUnicode[];
  static const char kUpperPatternUnicode[];

  static const char *get_reverse_policy_name(
      RTLReversePolicy reverse_policy);

  // max_num_edges argument allows limiting the amount of memory this
  // Trie can consume (if a new word insert would cause the Trie to
  // contain more edges than max_num_edges, all the edges are cleared
  // so that new inserts can proceed).
  Trie(DawgType type, const STRING &lang, PermuterType perm,
       uinT64 max_num_edges, int unicharset_size, int debug_level) {
    init(type, lang, perm, unicharset_size, debug_level);
    num_edges_ = 0;
    max_num_edges_ = max_num_edges;
    deref_node_index_mask_ = ~letter_mask_;
    new_dawg_node();  // need to allocate node 0
    initialized_patterns_ = false;
  }
  virtual ~Trie() { nodes_.delete_data_pointers(); }

  // Reset the Trie to empty.
  void clear();

  /** Returns the edge that corresponds to the letter out of this node. */
  EDGE_REF edge_char_of(NODE_REF node_ref, UNICHAR_ID unichar_id,
                        bool word_end) const {
    EDGE_RECORD *edge_ptr;
    EDGE_INDEX edge_index;
    if (!edge_char_of(node_ref, NO_EDGE, FORWARD_EDGE, word_end, unichar_id,
                      &edge_ptr, &edge_index)) return NO_EDGE;
    return make_edge_ref(node_ref, edge_index);
  }

  /**
   * Fills the given NodeChildVector with all the unichar ids (and the
   * corresponding EDGE_REFs) for which there is an edge out of this node.
   */
  void unichar_ids_of(NODE_REF node, NodeChildVector *vec) const {
    const EDGE_VECTOR &forward_edges =
      nodes_[static_cast<int>(node)]->forward_edges;
    for (int i = 0; i < forward_edges.size(); ++i) {
      vec->push_back(NodeChild(unichar_id_from_edge_rec(forward_edges[i]),
                               make_edge_ref(node, i)));
    }
  }

  /**
   * Returns the next node visited by following the edge
   * indicated by the given EDGE_REF.
   */
  NODE_REF next_node(EDGE_REF edge_ref) const {
    if (edge_ref == NO_EDGE || num_edges_ == 0) return NO_EDGE;
    return next_node_from_edge_rec(*deref_edge_ref(edge_ref));
  }

  /**
   * Returns true if the edge indicated by the given EDGE_REF
   * marks the end of a word.
   */
  bool end_of_word(EDGE_REF edge_ref) const {
    if (edge_ref == NO_EDGE || num_edges_ == 0) return false;
    return end_of_word_from_edge_rec(*deref_edge_ref(edge_ref));
  }

  /** Returns UNICHAR_ID stored in the edge indicated by the given EDGE_REF. */
  UNICHAR_ID edge_letter(EDGE_REF edge_ref) const {
    if (edge_ref == NO_EDGE || num_edges_ == 0) return INVALID_UNICHAR_ID;
    return unichar_id_from_edge_rec(*deref_edge_ref(edge_ref));
  }

  // Prints the contents of the node indicated by the given NODE_REF.
  // At most max_num_edges will be printed.
  void print_node(NODE_REF node, int max_num_edges) const;

  // Writes edges from nodes_ to an EDGE_ARRAY and creates a SquishedDawg.
  // Eliminates redundant edges and returns the pointer to the SquishedDawg.
  // Note: the caller is responsible for deallocating memory associated
  // with the returned SquishedDawg pointer.
  SquishedDawg *trie_to_dawg();

  // Inserts the list of words from the given file into the Trie.
  // If reverse is true, calls WERD_CHOICE::reverse_unichar_ids_if_rtl()
  // on each word before inserting it into the Trie.
  bool read_word_list(const char *filename,
                      const UNICHARSET &unicharset,
                      Trie::RTLReversePolicy reverse);

  // Inserts the list of patterns from the given file into the Trie.
  // The pattern list file should contain one pattern per line in UTF-8 format.
  //
  // Each pattern can contain any non-whitespace characters, however only the
  // patterns that contain characters from the unicharset of the corresponding
  // language will be useful.
  // The only meta character is '\'. To be used in a pattern as an ordinary
  // string it should be escaped with '\' (e.g. string "C:\Documents" should
  // be written in the patterns file as "C:\\Documents").
  // This function supports a very limited regular expression syntax. One can
  // express a character, a certain character class and a number of times the
  // entity should be repeated in the pattern.
  //
  // To denote a character class use one of:
  // \c - unichar for which UNICHARSET::get_isalpha() is true (character)
  // \d - unichar for which UNICHARSET::get_isdigit() is true
  // \n - unichar for which UNICHARSET::get_isdigit() and
  //      UNICHARSET::isalpha() are true
  // \p - unichar for which UNICHARSET::get_ispunct() is true
  // \a - unichar for which UNICHARSET::get_islower() is true
  // \A - unichar for which UNICHARSET::get_isupper() is true
  //
  // \* could be specified after each character or pattern to indicate that
  // the character/pattern can be repeated any number of times before the next
  // character/pattern occurs.
  //
  // Examples:
  // 1-8\d\d-GOOG-411 will be expanded to strings:
  // 1-800-GOOG-411, 1-801-GOOG-411, ... 1-899-GOOG-411.
  //
  // http://www.\n\*.com will be expanded to strings like:
  // http://www.a.com http://www.a123.com ... http://www.ABCDefgHIJKLMNop.com
  //
  // Note: In choosing which patterns to include please be aware of the fact
  // providing very generic patterns will make tesseract run slower.
  // For example \n\* at the beginning of the pattern will make Tesseract
  // consider all the combinations of proposed character choices for each
  // of the segmentations, which will be unacceptably slow.
  // Because of potential problems with speed that could be difficult to
  // identify, each user pattern has to have at least kSaneNumConcreteChars
  // concrete characters from the unicharset at the beginning.
  bool read_pattern_list(const char *filename, const UNICHARSET &unicharset);

  // Initializes the values of *_pattern_ unichar ids.
  // This function should be called before calling read_pattern_list().
  void initialize_patterns(UNICHARSET *unicharset);

  // Fills in the given unichar id vector with the unichar ids that represent
  // the patterns of the character classes of the given unichar_id.
  void unichar_id_to_patterns(UNICHAR_ID unichar_id,
                              const UNICHARSET &unicharset,
                              GenericVector<UNICHAR_ID> *vec) const;

  // Returns the given EDGE_REF if the EDGE_RECORD that it points to has
  // a self loop and the given unichar_id matches the unichar_id stored in the
  // EDGE_RECORD, returns NO_EDGE otherwise.
  virtual EDGE_REF pattern_loop_edge(EDGE_REF edge_ref,
                                     UNICHAR_ID unichar_id,
                                     bool word_end) const {
    if (edge_ref == NO_EDGE) return NO_EDGE;
    EDGE_RECORD *edge_rec = deref_edge_ref(edge_ref);
    return (marker_flag_from_edge_rec(*edge_rec) &&
            unichar_id == unichar_id_from_edge_rec(*edge_rec) &&
            word_end == end_of_word_from_edge_rec(*edge_rec)) ?
            edge_ref : NO_EDGE;
  }

  // Adds a word to the Trie (creates the necessary nodes and edges).
  //
  // If repetitions vector is not NULL, each entry in the vector indicates
  // whether the unichar id with the corresponding index in the word is allowed
  // to repeat an unlimited number of times. For each entry that is true, MARKER
  // flag of the corresponding edge created for this unichar id is set to true).
  //
  // Return true if add succeeded, false otherwise (e.g. when a word contained
  // an invalid unichar id or the trie was getting too large and was cleared).
  bool add_word_to_dawg(const WERD_CHOICE &word,
                        const GenericVector<bool> *repetitions);
  bool add_word_to_dawg(const WERD_CHOICE &word) {
    return add_word_to_dawg(word, NULL);
  }

 protected:
  // The structure of an EDGE_REF for Trie edges is as follows:
  // [LETTER_START_BIT, flag_start_bit_):
  //                             edge index in *_edges in a TRIE_NODE_RECORD
  // [flag_start_bit, 30th bit]: node index in nodes (TRIE_NODES vector)
  //
  // With this arrangement there are enough bits to represent edge indices
  // (each node can have at most unicharset_size_ forward edges and
  // the position of flag_start_bit is set to be log2(unicharset_size_)).
  // It is also possible to accommodate a maximum number of nodes that is at
  // least as large as that of the SquishedDawg representation (in SquishedDawg
  // each EDGE_RECORD has 32-(flag_start_bit+NUM_FLAG_BITS) bits to represent
  // the next node index).
  //

  // Returns the pointer to EDGE_RECORD after decoding the location
  // of the edge from the information in the given EDGE_REF.
  // This function assumes that EDGE_REF holds valid node/edge indices.
  inline EDGE_RECORD *deref_edge_ref(EDGE_REF edge_ref) const {
    int edge_index = static_cast<int>(
      (edge_ref & letter_mask_) >> LETTER_START_BIT);
    int node_index = static_cast<int>(
      (edge_ref & deref_node_index_mask_) >> flag_start_bit_);
    TRIE_NODE_RECORD *node_rec = nodes_[node_index];
    return &(node_rec->forward_edges[edge_index]);
  }
  /** Constructs EDGE_REF from the given node_index and edge_index. */
  inline EDGE_REF make_edge_ref(NODE_REF node_index,
                                EDGE_INDEX edge_index) const {
    return ((node_index << flag_start_bit_) |
            (edge_index << LETTER_START_BIT));
  }
  /** Sets up this edge record to the requested values. */
  inline void link_edge(EDGE_RECORD *edge, NODE_REF nxt, bool repeats,
                        int direction, bool word_end, UNICHAR_ID unichar_id) {
    EDGE_RECORD flags = 0;
    if (repeats) flags |= MARKER_FLAG;
    if (word_end) flags |= WERD_END_FLAG;
    if (direction == BACKWARD_EDGE) flags |= DIRECTION_FLAG;
    *edge = ((nxt << next_node_start_bit_) |
             (static_cast<EDGE_RECORD>(flags) << flag_start_bit_) |
             (static_cast<EDGE_RECORD>(unichar_id) << LETTER_START_BIT));
  }
  /** Prints the given EDGE_RECORD. */
  inline void print_edge_rec(const EDGE_RECORD &edge_rec) const {
    tprintf("|" REFFORMAT "|%s%s%s|%d|", next_node_from_edge_rec(edge_rec),
            marker_flag_from_edge_rec(edge_rec) ? "R," : "",
            (direction_from_edge_rec(edge_rec) == FORWARD_EDGE) ? "F" : "B",
            end_of_word_from_edge_rec(edge_rec) ? ",E" : "",
            unichar_id_from_edge_rec(edge_rec));
  }
  // Returns true if the next node in recorded the given EDGE_RECORD
  // has exactly one forward edge.
  inline bool can_be_eliminated(const EDGE_RECORD &edge_rec) {
    NODE_REF node_ref = next_node_from_edge_rec(edge_rec);
    return (node_ref != NO_EDGE &&
            nodes_[static_cast<int>(node_ref)]->forward_edges.size() == 1);
  }

  // Prints the contents of the Trie.
  // At most max_num_edges will be printed for each node.
  void print_all(const char* msg, int max_num_edges) {
    tprintf("\n__________________________\n%s\n", msg);
    for (int i = 0; i < nodes_.size(); ++i) print_node(i, max_num_edges);
    tprintf("__________________________\n");
  }

  // Finds the edge with the given direction, word_end and unichar_id
  // in the node indicated by node_ref. Fills in the pointer to the
  // EDGE_RECORD and the index of the edge with the the values
  // corresponding to the edge found. Returns true if an edge was found.
  bool edge_char_of(NODE_REF node_ref, NODE_REF next_node,
                    int direction, bool word_end, UNICHAR_ID unichar_id,
                    EDGE_RECORD **edge_ptr, EDGE_INDEX *edge_index) const;

  // Adds an single edge linkage between node1 and node2 in the direction
  // indicated by direction argument.
  bool add_edge_linkage(NODE_REF node1, NODE_REF node2, bool repeats,
                        int direction, bool word_end,
                        UNICHAR_ID unichar_id);

  // Adds forward edge linkage from node1 to node2 and the corresponding
  // backward edge linkage in the other direction.
  bool add_new_edge(NODE_REF node1, NODE_REF node2,
                    bool repeats, bool word_end, UNICHAR_ID unichar_id) {
    return (add_edge_linkage(node1, node2, repeats, FORWARD_EDGE,
                             word_end, unichar_id) &&
            add_edge_linkage(node2, node1, repeats, BACKWARD_EDGE,
                             word_end, unichar_id));
  }

  // Sets the word ending flags in an already existing edge pair.
  // Returns true on success.
  void add_word_ending(EDGE_RECORD *edge,
                       NODE_REF the_next_node,
                       bool repeats,
                       UNICHAR_ID unichar_id);

  // Allocates space for a new node in the Trie.
  NODE_REF new_dawg_node();

  // Removes a single edge linkage to between node1 and node2 in the
  // direction indicated by direction argument.
  void remove_edge_linkage(NODE_REF node1, NODE_REF node2, int direction,
                           bool word_end, UNICHAR_ID unichar_id);

  // Removes forward edge linkage from node1 to node2 and the corresponding
  // backward edge linkage in the other direction.
  void remove_edge(NODE_REF node1, NODE_REF node2,
                   bool word_end, UNICHAR_ID unichar_id) {
    remove_edge_linkage(node1, node2, FORWARD_EDGE, word_end, unichar_id);
    remove_edge_linkage(node2, node1, BACKWARD_EDGE, word_end, unichar_id);
  }

  // Compares edge1 and edge2 in the given node to see if they point to two
  // next nodes that could be collapsed. If they do, performs the reduction
  // and returns true.
  bool eliminate_redundant_edges(NODE_REF node, const EDGE_RECORD &edge1,
                                 const EDGE_RECORD &edge2);

  // Assuming that edge_index indicates the first edge in a group of edges
  // in this node with a particular letter value, looks through these edges
  // to see if any of them can be collapsed. If so does it. Returns to the
  // caller when all edges with this letter have been reduced.
  // Returns true if further reduction is possible with this same letter.
  bool reduce_lettered_edges(EDGE_INDEX edge_index,
                             UNICHAR_ID unichar_id,
                             NODE_REF node,
                             const EDGE_VECTOR &backward_edges,
                             NODE_MARKER reduced_nodes);

  /** 
   * Order num_edges of consequtive EDGE_RECORDS in the given EDGE_VECTOR in
   * increasing order of unichar ids. This function is normally called
   * for all edges in a single node, and since number of edges in each node
   * is usually quite small, selection sort is used.
   */
  void sort_edges(EDGE_VECTOR *edges);

  /** Eliminates any redundant edges from this node in the Trie. */
  void reduce_node_input(NODE_REF node, NODE_MARKER reduced_nodes);

  // Returns the pattern unichar id for the given character class code.
  UNICHAR_ID character_class_to_pattern(char ch);

  // Member variables
  TRIE_NODES nodes_;              // vector of nodes in the Trie
  uinT64 num_edges_;              // sum of all edges (forward and backward)
  uinT64 max_num_edges_;          // maximum number of edges allowed
  uinT64 deref_direction_mask_;   // mask for EDGE_REF to extract direction
  uinT64 deref_node_index_mask_;  // mask for EDGE_REF to extract node index
  // Variables for translating character class codes denoted in user patterns
  // file to the unichar ids used to represent them in a Trie.
  bool initialized_patterns_;
  UNICHAR_ID alpha_pattern_;
  UNICHAR_ID digit_pattern_;
  UNICHAR_ID alphanum_pattern_;
  UNICHAR_ID punc_pattern_;
  UNICHAR_ID lower_pattern_;
  UNICHAR_ID upper_pattern_;
};
}  // namespace tesseract

#endif