This file is indexed.

/usr/include/tntdb/decimal.h is in libtntdb-dev 1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
/*
 * Copyright (C) 2007 Tommi Maekitalo, Mark Wright
 * 
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 * 
 * As a special exception, you may use this file as part of a free
 * software library without restriction. Specifically, if other files
 * instantiate templates or use macros or inline functions from this
 * file, or you compile this file and link it with other files to
 * produce an executable, this file does not by itself cause the
 * resulting executable to be covered by the GNU General Public
 * License. This exception does not however invalidate any other
 * reasons why the executable file might be covered by the GNU Library
 * General Public License.
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */

#ifndef TNTDB_DECIMAL_H
#define TNTDB_DECIMAL_H

#include <stdint.h>
#include <string>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <stdint.h>

namespace tntdb
{
  /**
   * This class holds a decimal floating point number.  It is necessary to
   * convert it to some other type to perform arithmetic and other operations.
   * Decimal is implemented with a 64 bit unsigned integer mantissa, and a
   * 32 bit exponent.  For conversions from integer types, strings, and reading
   * from the database, Decimal tries to maintain accuracy if the result will
   * fit in the 64 bit unsigned mantissa and exponent.  When converting to
   * integer types, Decimal will throw std::overflow exception if the result
   * will not fit.  For converting to binary floating point numbers, binary
   * floating point is used in the conversion, and the result is an
   * approximation.
   */
  class Decimal
  {
  public:
    typedef uint64_t MantissaType;
    typedef int32_t ExponentType;
    typedef int8_t FlagsType;
    typedef int8_t PrintFlagsType;
    enum { Base = 10 };
    /// Flags used for denoting positive or negative, infinity and not a number.
    enum FlagsTypeEnum
    {
      positive = 0x01,                          ///< Set if this Decimal is positive, else this Decimal is negative.
      infinity = 0x02,                          ///< Set if this Decimal is positive or negative infinity.
      negativeInfinity = infinity,              ///< Negative infinity.
      positiveInfinity = infinity | positive,   ///< Positive infinity.
      NaN = 0x04                                ///< Not a Number.
    };
    /// How infinity is printed on output.
    enum InfinityOutputType
    {
      infinityShort,   ///< Affects output only, print Inf or -Inf.
      infinityLong,    ///< Affects output only, print Infinity or -Infinity instead of Inf or -Inf.
      infinityTilde    ///< Affects output only, print ~ or -~ (as used in Oracle) instead of Inf or -Inf.
    };
    /// Rounding algorithm.
    enum RoundingAlgorithmType
    {
      truncate,        ///< 1.1, 1.5, and 1.6 and all rounded down to 1.0.
      round,           ///< 1.1 is rounded down to 1.0, 1.5, and 1.6 are rounded up to 2.0.
      bankersRound     ///< 1.1 and 1.5 are rounded down to 1.0, 1.6 is rounded up to 2.0.
    };
  private:
    MantissaType mantissa;
    ExponentType exponent;
    FlagsType flags;
    PrintFlagsType defaultPrintFlags;

  public:
    /// Initializes the Decimal-object with empty values.
    Decimal();
    /// Initializes the Decimal-object with the given double value.
    /// @param value double to initialize it with.
    explicit Decimal(double value);

    /// Initialize this Decimal-object with the given decimal mantissa and exponent.
    /// @param man integer decimal mantissa value to set this Decimal number to.
    /// @param exp integer base 10 exponent to set this Decimal number to.
    Decimal(int64_t man, ExponentType exp);

    /// Initializes the Decimal-object with the given MantissaType mantissa
    /// and ExponentType exponent
    /// @param man integer decimal mantissa value to set this Decimal number to.
    /// @param exp integer base 10 exponent to set this Decimal number to.
    /// @param f the flags, need to specify positive or negative. @link Decimal::FlagsTypeEnum @endlink
    /// @param pf the print flags for infinity and not a number. @link Decimal::InfinityOutputType @endlink
    Decimal(MantissaType man, ExponentType exp, FlagsType f, PrintFlagsType pf = infinityShort);
    /// Return the decimal mantissa.
    /// @return the decimal mantissa.
    MantissaType getMantissa() const;
    /// Return the base 10 exponent.
    /// @return the base 10 exponent.
    ExponentType getExponent() const;

    /// Is this Decimal number positive?
    /// @return true if this Decimal number is positive, else return false.
    bool isPositive() const
      { return flags & positive; }

    /// Is this Decimal number positive or negative infinity?
    /// @return true if this Decimal number is either positive or negative
    /// infinity, else return false.
    bool isInfinity() const;

    /// Is this Decimal number positive or negative infinity?
    /// @param positiveInfinity
    /// @return If postitiveInfinity is true, then return true if this
    /// Decimal number is postitive infinity.
    /// Else if postitiveInfinity is false, then return true if this
    /// Decimal number is negative infinity.
    /// Else return false.
    bool isInfinity(bool positiveInfinity) const;

    /// Is this Decimal not a number?
    /// @return true if this Decimal number is Not a Number.
    /// Else return false.
    bool isNaN() const;

    /// Is this Decimal number zero?
    /// @return true if this Number object is zero, else return false.
    bool isZero() const;

    /// Split this decimal number into integral part, fractional
    /// and exponent parts.  An optional user specified exponent
    /// offset can be used to first scale the decimal number.
    /// @param integral the part of the decimal floating point
    /// number to the left of the decimal point.
    /// @param fractional the part to the decimal floating point
    /// number to the right of the decimal point.
    /// @param ex the exponent of the decimal floating point number
    /// @param optionalUserSpecifiedExponentOffset optional user
    /// specified exponent offset can be used to first scale the decimal number.
    /// @throw std::overflow_error if the result will not fit
    template <typename ManType>
    void getIntegralFractionalExponent(ManType &integral,
                                       ManType &fractional,
                                       ExponentType &ex,
                                       ExponentType optionalUserSpecifiedExponentOffset = 0) const throw(std::overflow_error);

    /// Return the number of decimal digits in n.
    template <typename IntegerType>
    IntegerType numberOfDigits(IntegerType n) const;

    /// Return this number as a C++ integer type.
    /// @param roundingAlgorithm @link Decimal::RoundingAlgorithmType @endlink
    /// @return integer result if the result will fit.
    /// @throw std::overflow_error if the result will not fit
    template <typename IntegerType>
    IntegerType getInteger(RoundingAlgorithmType roundingAlgorithm = round) const throw(std::overflow_error);

    /// Return this number as a C++ floating point type.
    /// @return binary floating point result, which is computed
    /// with binary floating point arithmetic, and hence is an approximation.
    template <typename FloatingPointType>
    FloatingPointType getFloatingPoint() const;

    /// Return this decimal number rounded as a C++ int.
    /// @return int result if the result will fit.
    /// @throw std::overflow_error if the result will not fit
    int getInt() const throw(std::overflow_error)
      { return getInteger<int>(); }

    /// Return this decimal number rounded as a C++ long.
    /// @return long result if the result will fit.
    /// @throw std::overflow_error if the result will not fit
    long getLong() const throw(std::overflow_error)
      { return getInteger<long>(); }

    /// Return this decimal number rounded as a C++ int32_t.
    /// @return int32_t result if the result will fit.
    /// @throw std::overflow_error if the result will not fit
    int32_t getInt32() const throw(std::overflow_error)
      { return getInteger<int32_t>(); }

    /// Return this decimal number rounded as a C++ unsigned.
    /// @return unsigned result if the result will fit.
    /// @throw std::overflow_error if the result will not fit
    unsigned getUnsigned() const throw(std::overflow_error)
      { return getInteger<unsigned>(); }

    /// Return this decimal number rounded as a C++ unsigned long.
    /// @return unsigned long result if the result will fit.
    /// @throw std::overflow_error if the result will not fit
    unsigned long getUnsignedLong() const throw(std::overflow_error)
      { return getInteger<unsigned long>(); }

    /// Return this decimal number rounded as a C++ uint32_t.
    /// @return uint32_t result if the result will fit.
    /// @throw std::overflow_error if the result will not fit
    uint32_t getUnsigned32() const throw(std::overflow_error)
      { return getInteger<uint32_t>(); }

    /// Return this decimal number rounded as a C++ int64_t.
    /// @return int64_t result if the result will fit.
    /// @throw std::overflow_error if the result will not fit
    int64_t getInt64() const throw(std::overflow_error)
      { return getInteger<int64_t>(); }

    /// Return this decimal number rounded as a C++ uint64_t.
    /// @return uint64_t number, if the result will fit.
    /// @throw std::overflow_error if the result will not fit
    uint64_t getUnsigned64() const throw(std::overflow_error)
      { return getInteger<uint64_t>(); }

    /// Convert to a C++ float.
    /// @return float result, which is computed with binary floating point
    /// arithmetic, and hence is an approximation.
    float getFloat() const
      { return getFloatingPoint<float>(); }

    /// Convert to a C++ double.
    /// @return double result, which is computed with binary floating point
    /// arithmetic, and hence is an approximation.
    double getDouble() const
      { return getFloatingPoint<double>(); }

    /// Set this this tntdb::Decimal object to the value of the given
    /// integer type.
    /// @param num integer value to set this Decimal number to.
    template <typename IntegerType>
    void setInteger(IntegerType num);

    /// Set this this tntdb::Decimal object to the value of the given
    /// floating point type.
    /// @param num floating point value to set this Decimal number to.
    template <typename FloatingPointType>
    void setFloatingPoint(FloatingPointType num);

    /// Set this this tntdb::Decimal object to the value of the given
    /// integer type mantissa and base 10 exponent.
    /// @param num integer decimal mantissa value to set this Decimal number to.
    /// @param exponent integer base 10 exponent to set this Decimal number to.
    template <typename IntegerType>
    void setDecimalInteger(IntegerType num, int32_t exponent);

    /// Set this this tntdb::Decimal object to the value of the given int.
    /// @param num integer value to set this Decimal number to.
    void setInt(int num)
      { setInteger<int>(num); }

    /// Set this this tntdb::Decimal object to the value of the given long.
    /// @param num integer value to set this Decimal number to.
    void setLong(long num)
      { setInteger<long>(num); }

    /// Set this this tntdb::Decimal object to the value of the given int32_t.
    /// @param num integer value to set this Decimal number to.
    void setInt32(int32_t num)
      { setInteger<int32_t>(num); }

    /// Set this this tntdb::Decimal object to the value of the given unsigned.
    /// @param num integer value to set this Decimal number to.
    void setUnsigned(unsigned num)
      { setInteger<unsigned>(num); }

    /// Set this this tntdb::Decimal object to the value of the given unsigned.
    /// @param num integer value to set this Decimal number to.
    void setUnsignedLong(unsigned long num)
      { setInteger<unsigned long>(num); }

    /// Set this this tntdb::Decimal object to the value of the given uint32_t.
    /// @param num integer value to set this Decimal number to.
    void setUnsigned32(uint32_t num)
      { setInteger<uint32_t>(num); }

    /// Set this this tntdb::Decimal object to the value of the given int64_t.
    /// @param num integer value to set this Decimal number to.
    void setInt64(int64_t num)
      { setInteger<int64_t>(num); }

    /// Set this this tntdb::Decimal object to the value of the given uint64_t.
    /// @param num integer value to set this Decimal number to.
    void setUnsigned64(uint64_t num)
      { setInteger<int64_t>(num); }

    /// Set this this tntdb::Decimal object to the value of the given int64_t
    /// decimal mantissa and base 10 exponent.
    /// @param num decimal mantissa integer value to set this Decimal number to.
    /// @param exp base 10 exponent.
    void setDecimalInt64(int64_t num, int32_t exp)
      { setDecimalInteger<int64_t>(num, exp); }

    /// Set this this tntdb::Decimal object to the value of the given uint64_t
    /// decimal mantissa and base 10 exponent.
    /// @param num decimal mantissa integer value to set this Decimal number to.
    /// @param exp base 10 exponent.
    void setDecimalUnsigned64(uint64_t num, int32_t exp)
      { setDecimalInteger<int64_t>(num, exp); }

    /// Set this this tntdb::Decimal object to the value of the given float.
    /// @param num float value to set this Decimal number to.
    void setFloat(float num)
      { setFloatingPoint<float>(num); }

    /// Set this this tntdb::Decimal object to the value of the given double.
    /// @param num double value to set this Decimal number to.
    void setDouble(double num)
      { setFloatingPoint<double>(num); }
    
    /// Return this Decimal number as a string.
    /// @return string representation of this decimal number.
    std::string toString() const;

    /// Print this Decimal number.  If out.precision() != 0, then this
    /// decimal number is printed with out.precision() significant digits.
    /// @param out output stream
    std::ostream &print(std::ostream &out) const;

    /// Print this Decimal number.  If out.precision() != 0, then
    /// this decimal number is printed with out.precision() significant digits.
    /// @param out output stream
    /// @param printFlags the optional printFlags only affect
    /// how positive and negative infinity are printed.
    std::ostream &print(std::ostream &out, PrintFlagsType printFlags) const;

    /// Read a Decimal number.
    /// @param in input stream
    /// @param ignoreOverflowReadingFraction if true, ignore overflow errors
    /// while reading the fractional part, and set the mantissa to the the
    /// value before the overflow.  This is useful while converting from
    /// float or double values to Decimal.  The full range of significant
    /// digits that the Decimal can hold can be read in the conversion like:
    /// std::ostringstream ostr;
    /// ostr.precision(24);
    /// ostr << num;
    /// read(ostr.str(), true);
    std::istream &read(std::istream &in, bool ignoreOverflowReadingFraction = false);

    ///@name Low level arithmetic methods
    //\@{
    /// Multiply an integer type by 10, checking for overflow.
    /// @param n on input: the number to multply by 10, on output, the
    /// result of the multiplication by 10.
    /// @return true if overflow detected, else false.
    template <typename T>
    static bool overflowDetectedInMultiplyByTen(T &n);

    /// Divide an integer type by a power of 10 divisor, checking
    /// for overflow.
    /// @param dividend the integer dividend.
    /// @param quotient the result of the division by the power of 10 divisor.
    /// @param remainder the remainder result of the division by the power of 10 divisor.
    /// @param divisorPowerOfTenDigits divide by 10^divisorPowerOfTenDigits.
    /// @return true if overflow detected, else false.
    /// @throw std::overflow_error if the result will not fit
    template <typename ManType>
    static void divideByPowerOfTen(const ManType dividend,
                                   ManType &quotient,
                                   ManType &remainder,
                                   ManType divisorPowerOfTenDigits) throw(std::overflow_error);
    //\@}

    void normalize();

    bool operator== (const tntdb::Decimal& other) const;

    bool operator!= (const tntdb::Decimal& other) const
    { return !(*this == other); }

    bool operator< (const tntdb::Decimal& other) const;

    bool operator> (const tntdb::Decimal& other) const
    { return other < *this; }

    bool operator<= (const tntdb::Decimal& other) const
    { return !(other < *this); }

    bool operator>= (const tntdb::Decimal& other) const
    { return !(*this < other); }

  protected:
    ///@internal
    //\@{
    /// Initialize this Decimal number, called by the constructors.
    /// @param m integer decimal mantissa value to set this Decimal number to.
    /// @param e integer base 10 exponent to set this Decimal number to.
    /// @param f the flags, need to specify positive or negative. @link Decimal::FlagsTypeEnum @endlink
    /// @param pf the print flags for infinity and not a number. @link Decimal::InfinityOutputType @endlink
    void init(MantissaType m, ExponentType e, FlagsType f = positive, PrintFlagsType pf = infinityShort);

    /// Print fraction
    static void printFraction(std::ostream &out,
                              ExponentType fracDigits,
                              MantissaType fractional);
    //\@}
  };

  template <typename T>
  bool Decimal::overflowDetectedInMultiplyByTen(T &n)
  {
    bool overflowDetected = false;
    T nTimes2 = n << 1;
    T nTimes4 = n << 2;
    T nTimes8 = n << 3;
    T nTimes10 = (nTimes2 + nTimes8);
    if ((nTimes2 < n) || (nTimes4 < nTimes2) || (nTimes8 < nTimes4) || (nTimes10 < nTimes8))
      overflowDetected = true;
    else
    {
      n = nTimes10;
    }
    return overflowDetected;
  }

  template <typename IntegerType>
  IntegerType Decimal::numberOfDigits(IntegerType n) const
  {
    IntegerType multiplier = IntegerType(Base);
    IntegerType noDigits = 1;
    IntegerType abs = n;
    if (n < 0)
      abs = -n;
    bool overflowDetected = false;
    for (; !overflowDetected && (abs > multiplier); ++noDigits)
    {
      overflowDetected = Decimal::overflowDetectedInMultiplyByTen(multiplier);
    }
    return noDigits;
  }

  template <typename ManType>
  void Decimal::divideByPowerOfTen(const ManType dividend,
                                   ManType &quotient,
                                   ManType &remainder,
                                   ManType divisorPowerOfTenDigits) throw(std::overflow_error)
  {
    ManType divisorExponentPowerOfTenDigitsRemaining = divisorPowerOfTenDigits;
    // If the divisorPowerOfTenDigits is larger than
    // maxDivisorDigits, then do 2 (or more if required) divides
    // to avoid integer overflow in the multiplication calculating
    // the divisor.  The largest mulitple of 10 that can be stored in an
    // unsigned 64 bit int is 10^19, signed 64 bit int is 10^18,
    // 32 bit signed or unsigned int is 10^9, 16 bit signed or unsigned int
    // is 10000, 8 bit signed or unsigned char is 100.
    const ManType maxDivisorDigits = ((sizeof(ManType) >= 8) ? ((ManType(-1) > 0) ? 19 : 18) :
                                      ((sizeof(ManType) == 4) ? 9 : ((sizeof(ManType) == 2) ? 4 : 2 )));
    ManType exponentDivisor = ManType(Base);
    ManType previousExponentDivisor = ManType(Base);
    bool overflowDetected = false;
    if (divisorExponentPowerOfTenDigitsRemaining > maxDivisorDigits)
    {
      // The first divide is to make divisorExponentPowerOfTenDigitsRemaining an even multiple of
      // maxDivisorDigits.
      ManType divideChunksRemaining = divisorExponentPowerOfTenDigitsRemaining / maxDivisorDigits;
      ManType firstDivideDigits = divisorExponentPowerOfTenDigitsRemaining % maxDivisorDigits;
      for (ManType i = 1; (i < firstDivideDigits) && !overflowDetected; ++i)
      {
        previousExponentDivisor = exponentDivisor;
        overflowDetected = overflowDetectedInMultiplyByTen(exponentDivisor);
      }
      if (overflowDetected)
        throw std::overflow_error(std::string("integer multiply overflow detected in Decimal::divideByPowerOfTen()"));
      quotient = ManType(dividend) / exponentDivisor;
      divisorExponentPowerOfTenDigitsRemaining -= firstDivideDigits;
      --divideChunksRemaining;
      exponentDivisor = ManType(Base);
      // If divisorExponentPowerOfTenDigitsRemaining is still larger than maxDivisorDigits,
      // then do more divides until it is equal to maxDivisorDigits.
      if (divideChunksRemaining > 0)
      {
        // Calculate the 10^maxDivisorDigits divisor
        for (ManType i = 1; (i < maxDivisorDigits) && !overflowDetected; ++i)
        {
          previousExponentDivisor = exponentDivisor;
          overflowDetected = overflowDetectedInMultiplyByTen(exponentDivisor);
        }
        if (overflowDetected)
          throw std::overflow_error(std::string("integer multiply overflow detected in Decimal::divideByPowerOfTen()"));
        // Do all but the last divide
        while (divideChunksRemaining > 0)
        {
          quotient = ManType(dividend) / exponentDivisor;
          --divideChunksRemaining;
          divisorExponentPowerOfTenDigitsRemaining -= maxDivisorDigits;
        }
        exponentDivisor = ManType(Base);
      }
    }
    for (ManType i = 1; (i < divisorExponentPowerOfTenDigitsRemaining) && !overflowDetected; ++i)
    {
      previousExponentDivisor = exponentDivisor;
      overflowDetected = overflowDetectedInMultiplyByTen(exponentDivisor);
    }
    if (overflowDetected)
      throw std::overflow_error(std::string("integer multiply overflow detected in Decimal::divideByPowerOfTen()"));
    quotient = ManType(dividend) / exponentDivisor;
    remainder = ManType(dividend) % exponentDivisor;
  }

  template <typename ManType>
  void Decimal::getIntegralFractionalExponent(ManType &integral,
                                              ManType &fractional,
                                              ExponentType &ex,
                                              ExponentType optionalUserSpecifiedExponentOffset) const throw(std::overflow_error)
  {
    MantissaType integralPart = mantissa;
    MantissaType fractionalPart = MantissaType(0);
    ExponentType exp = exponent - optionalUserSpecifiedExponentOffset;
    if ((optionalUserSpecifiedExponentOffset != 0) && (integralPart != 0))
    {
      if (optionalUserSpecifiedExponentOffset >= 0)
      {
        MantissaType previousIntegralPart = MantissaType(0);
        bool overflowDetected = false;
        for (ExponentType i = 0; (i < optionalUserSpecifiedExponentOffset) && !overflowDetected; ++i)
        {
          previousIntegralPart = integralPart;
          overflowDetected = overflowDetectedInMultiplyByTen(integralPart);
        }
        if (overflowDetected)
          throw std::overflow_error(std::string("integer multiply overflow detected in Decimal::getIntegralFractionalExponent()"));
      }
      else
      {
        MantissaType absOptionalUserSpecifiedExponentOffset = MantissaType(-optionalUserSpecifiedExponentOffset);
        Decimal::divideByPowerOfTen(mantissa, integralPart, fractionalPart, absOptionalUserSpecifiedExponentOffset);
      }
    }
    ManType integralResult = 0;
    // if positive, or ManType is an unsigned integer type
    if (flags & positive)
    {
      integralResult = ManType(integralPart);
      // If the result is negative, or if the result after the cast
      // is different, then throw an overflow_error exception.
      if ((integralResult < 0) || (MantissaType(integralResult) != integralPart))
        throw std::overflow_error(std::string("integer overflow detected in Decimal::getIntegralFractionalExponent()"));
    }
    else
    {
      integralResult = -ManType(integralPart);
      // If ManType is an unsigned integer type, or if the
      // result is positive, or if the absolute value of the result
      // after the cast is different, then throw an overflow_error exception.
      if ((ManType(-1) > ManType(0)) || (integralResult > 0) || (MantissaType(-integralResult) != integralPart))
        throw std::overflow_error(std::string("integer overflow detected in Decimal::getIntegralFractionalExponent()"));
    }
    integral = integralResult;
    fractional = ManType(fractionalPart);
    ex = exp;
  }

  template <typename IntegerType>
  IntegerType Decimal::getInteger(RoundingAlgorithmType roundingAlgorithm) const throw(std::overflow_error)
  {
    ExponentType exp = 0;
    IntegerType quotient = 0;
    IntegerType remainder = 0;
    IntegerType result = 0;
    getIntegralFractionalExponent<IntegerType>(quotient,
                                               remainder,
                                               exp,
                                               exponent);
    if (exp >= 0)
      return quotient;

    ExponentType absExponent = -exp;
    IntegerType oneHalf = IntegerType(Base / 2);
    for (ExponentType i = 1; i < absExponent; ++i)
    {
      oneHalf *= IntegerType(Base);
    }

    switch(roundingAlgorithm)
    {
      case round:
        // if positive, or IntegerType is an unsigned integer type
        if ((flags & positive) || (IntegerType(-1) > IntegerType(0)))
        {
          result = (remainder >= oneHalf) ? quotient + IntegerType(1) : quotient;
        }
        else
        {
          result = (remainder >= oneHalf) ? -(quotient + IntegerType(1)) : -quotient;
        }

      case bankersRound:
        if ((flags & positive) || (IntegerType(-1) > IntegerType(0)))
        {
          result = (remainder > oneHalf) ? quotient + IntegerType(1) : quotient;
        }
        else
        {
          result = (remainder > oneHalf) ? -(quotient + IntegerType(1)) : -quotient;
        }
      default:
        {
          // default is roundingAlgorithm = truncate
          result = ((flags & positive) || (IntegerType(-1) > IntegerType(0))) ? quotient : -quotient;
        }
    }
    return result;
  }

  template <typename FloatingPointType>
  FloatingPointType Decimal::getFloatingPoint() const
  {
    if (exponent >= 0)
    {
      FloatingPointType exponentMultiplier = FloatingPointType(1);
      for (ExponentType i = 0; i < exponent; ++i)
        exponentMultiplier *= FloatingPointType(Base);
      FloatingPointType x = FloatingPointType(mantissa) * exponentMultiplier;
      if (flags & positive)
        return x;
      else
        return -x;
    }
    else
    {
      ExponentType absExponent = -exponent;
      FloatingPointType exponentDivisor = FloatingPointType(Base);
      for (ExponentType i = 1; i < absExponent; ++i)
      {
        exponentDivisor *= FloatingPointType(Base);
      }
      FloatingPointType quotient = FloatingPointType(mantissa) / exponentDivisor;
      if (flags & positive)
      {
        return quotient;
      }
      else
      {
        return -quotient;
      }
    }
  }

  template <typename IntegerType>
  void Decimal::setInteger(IntegerType num)
  {
    if (num >= 0)
    {
      flags |= positive;
      mantissa = MantissaType(num);
    }
    else
    {
      flags &= ~positive;
      mantissa = MantissaType(-num);
    }
    flags &= ~(infinity | NaN);
    exponent = 0;
  }

  template <typename FloatingPointType>
  void Decimal::setFloatingPoint(FloatingPointType num)
  {
    // 2^64 = 18446744073709551616, which has 20 digits.
    // Hence a precision of 20 digits could overflow.
    // If it does, hopefully it will be while reading
    // the fractional part of the floating point number,
    // in which case read() can use the mantissa value before
    // the overflow.
    std::ostringstream ostr;
    ostr.precision(24);
    ostr << num;
    std::string numStr(ostr.str());
    std::istringstream istr(numStr);
    read(istr, true);
  }

  /// Print this Decimal number.  If out.precision() != 0, then this
  /// decimal number is printed with out.precision() significant digits.
  std::ostream &operator<<(std::ostream &out, const Decimal& decimal);

  /// Read a Decimal number.
  std::istream &operator>>(std::istream &in, Decimal& decimal);
}

#endif // TNTDB_DECIMAL_H