This file is indexed.

/usr/include/ucommon/memory.h is in libucommon-dev 3.2.0-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
// Copyright (C) 2006-2010 David Sugar, Tycho Softworks.
//
// This file is part of GNU uCommon C++.
//
// GNU uCommon C++ is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published 
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// GNU uCommon C++ is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with GNU uCommon C++.  If not, see <http://www.gnu.org/licenses/>.

/**
 * Private heaps, pools, and associations.
 * Private heaps often can reduce locking contention in threaded applications
 * since they do not require using the global "malloc" function.  Private
 * heaps also can be used as auto-release heaps, where all memory allocated
 * and parsled out for small objects can be automatically released all at once.
 * Pager pools are used to optimize system allocation around page boundries.
 * Associations allow private memory to be tagged and found by string
 * identifiers.
 * @file ucommon/memory.h
 */

#ifndef	_UCOMMON_MEMORY_H_
#define	_UCOMMON_MEMORY_H_

#ifndef _UCOMMON_CONFIG_H_
#include <ucommon/platform.h>
#endif

#ifndef	 _UCOMMON_LINKED_H_
#include <ucommon/linked.h>
#endif

NAMESPACE_UCOMMON

class PagerPool;

/**
 * An alternate memory pager private heap manager.  This is used to allocate
 * in an optimized manner, as it assumes no mutex locks are held or used as
 * part of it's own internal processing.  It also is designed for optimized
 * performance.
 * @author David Sugar <dyfet@gnutelephony.org>
 */ 
class __EXPORT memalloc
{
private:
	size_t pagesize, align;
	unsigned count;

	typedef struct mempage {
		struct mempage *next;
		union {
			void *memalign;
			unsigned used;		
		};
	}	page_t;

	page_t *page;

protected:
	unsigned limit;

	/**
	 * Acquire a new page from the heap.  This is mostly used internally.
	 * @return page structure of the newly aquired memory page.
	 */
	page_t *pager(void);

public:
	/**
	 * Construct a memory pager.
	 * @param page size to use or 0 for OS allocation size.
	 */
	memalloc(size_t page = 0);

	/**
	 * Destroy a memory pager.  Release all pages back to the heap at once.
	 */
	virtual ~memalloc();

	/**
	 * Get the number of pages that have been allocated from the real heap.
	 * @return pages allocated from heap.
	 */
	inline unsigned getPages(void)
		{return count;};

	/**
	 * Get the maximum number of pages that are permitted.  One can use a
	 * derived class to set and enforce a maximum limit to the number of
	 * pages that will be allocated from the real heap.  This is often used
	 * to detect and bring down apps that are leaking.
	 * @return page allocation limit.
	 */
	inline unsigned getLimit(void)
		{return limit;};

	/**
	 * Get the size of a memory page.
	 * @return size of each pager heap allocation.
	 */
	inline unsigned getAlloc(void)
		{return pagesize;};

	/**
	 * Determine fragmentation level of acquired heap pages.  This is
	 * represented as an average % utilization (0-100) and represents the
	 * used portion of each allocated heap page vs the page size.  Since
	 * requests that cannot fit on an already allocated page are moved into
	 * a new page, there is some unusable space left over at the end of the
	 * page.  When utilization approaches 100, this is good.  A low utilization
	 * may suggest a larger page size should be used.
	 * @return pager utilization.
	 */
	unsigned utilization(void);

	/**
	 * Purge all allocated memory and heap pages immediately.
	 */
	void purge(void);

	/**
	 * Allocate memory from the pager heap.  The size of the request must be
	 * less than the size of the memory page used.
	 * @param size of memory request.
	 * @return allocated memory or NULL if not possible.
	 */
	virtual void *alloc(size_t size);

	/**
	 * Allocate memory from the pager heap.  The size of the request must be
	 * less than the size of the memory page used.  The memory is initialized
	 * to zero.
	 * @param size of memory request.
	 * @return allocated memory or NULL if not possible.
	 */
	void *zalloc(size_t size);

	/**
	 * Duplicate NULL terminated string into allocated memory.
	 * @param string to copy into memory.
	 * @return allocated memory with copy of string or NULL if cannot allocate.
	 */
	char *dup(const char *string);

	/**
	 * Duplicate existing memory block into allocated memory.
	 * @param memory to data copy from.
	 * @param size of memory to allocate.
	 * @return allocated memory with copy or NULL if cannot allocate.
	 */
	void *dup(void *memory, size_t size);
};

/**
 * A managed private heap for small allocations.  This is used to allocate
 * a large number of small objects from a paged heap as needed and to then
 * release them together all at once.  This pattern has significiently less
 * overhead than using malloc and offers less locking contention since the 
 * memory pager can also have it's own mutex.  Pager pool allocated memory
 * is always aligned to the optimal data size for the cpu bus and pages are
 * themselves created from memory aligned allocations.  A page size for a
 * memory pager should be some multiple of the OS paging size.
 *
 * The mempager uses a strategy of allocating fixed size pages as needed
 * from the real heap and allocating objects from these pages as needed.
 * A new page is allocated from the real heap when there is insufficient
 * space in the existing page to complete a request.  The largest single
 * memory allocation one can make is restricted by the page size used, and
 * it is best to allocate objects a significent fraction smaller than the
 * page size, as fragmentation occurs at the end of pages when there is
 * insufficent space in the current page to complete a request. 
 * @author David Sugar <dyfet@gnutelephony.org>
 */ 
class __EXPORT mempager : public memalloc
{
private:
	pthread_mutex_t mutex;

public:
	/**
	 * Construct a memory pager.
	 * @param page size to use or 0 for OS allocation size.
	 */
	mempager(size_t page = 0);

	/**
	 * Destroy a memory pager.  Release all pages back to the heap at once.
	 */
	virtual ~mempager();

	/**
	 * Lock the memory pager mutex.  It will be more efficient to lock
	 * the pager and then call the locked allocator than using alloc which
	 * seperately locks and unlocks for each request when a large number of
	 * allocation requests are being batched together.
	 */
	inline void lock(void)
		{pthread_mutex_lock(&mutex);};

	/**
	 * Unlock the memory pager mutex.
	 */
	inline void unlock(void)
		{pthread_mutex_unlock(&mutex);};

	/**
	 * Determine fragmentation level of acquired heap pages.  This is
	 * represented as an average % utilization (0-100) and represents the
	 * used portion of each allocated heap page vs the page size.  Since
	 * requests that cannot fit on an already allocated page are moved into
	 * a new page, there is some unusable space left over at the end of the
	 * page.  When utilization approaches 100, this is good.  A low utilization
	 * may suggest a larger page size should be used.
	 * @return pager utilization.
	 */
	unsigned utilization(void);

	/**
	 * Purge all allocated memory and heap pages immediately.
	 */
	void purge(void);

	/**
	 * Return memory back to pager heap.  This actually does nothing, but
	 * might be used in a derived class to create a memory heap that can
	 * also receive (free) memory allocated from our heap and reuse it,
	 * for example in a full private malloc implimentation in a derived class.
	 * @param memory to free back to private heap.
	 */
	virtual void dealloc(void *memory);

	/**
	 * Allocate memory from the pager heap.  The size of the request must be
	 * less than the size of the memory page used.  The memory pager mutex
	 * is locked during this operation and then released.
	 * @param size of memory request.
	 * @return allocated memory or NULL if not possible.
	 */
	void *alloc(size_t size);

	/**
	 * Allocate memory from the pager heap.  The size of the request must be
	 * less than the size of the memory page used.  The memory pager mutex
	 * is locked during this operation and then released.  This version
	 * zeros memory after the mutex lock has been released.
	 * @param size of memory request.
	 * @return allocated memory or NULL if not possible.
	 */
	void *zalloc(size_t size);

	/**
	 * Duplicate NULL terminated string into allocated memory.  The mutex
	 * lock is acquired to perform this operation and then released.
	 * @param string to copy into memory.
	 * @return allocated memory with copy of string or NULL if cannot allocate.
	 */
	char *dup(const char *string);

	/**
	 * Duplicate existing memory block into allocated memory.  The mutex
	 * lock is acquired to perform this operation and then released.
	 * @param memory to data copy from.
	 * @param size of memory to allocate.
	 * @return allocated memory with copy or NULL if cannot allocate.
	 */
	void *dup(void *memory, size_t size);
};

/**
 * Create a linked list of auto-releasable objects.  LinkedObject derived
 * objects can be created that are assigned to an autorelease object list.
 * When the autorelease object falls out of scope, all the objects listed'
 * with it are automatically deleted.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT autorelease
{
private:
	LinkedObject *pool;

public:
	/**
	 * Create an initially empty autorelease pool.
	 */
	autorelease();

	/**
	 * Destroy an autorelease pool and delete member objects.
	 */
	~autorelease();

	/**
	 * Destroy an autorelease pool and delete member objects.  This may be
	 * used to release an existing pool programatically when desired rather
	 * than requiring the object to fall out of scope.
	 */
	void release(void);

	/**
	 * Add a linked object to the autorelease pool.
	 * @param object to add to pool.
	 */
	void operator+=(LinkedObject *object);
};

/**
 * This is a base class for objects that may be created in pager pools.
 * This is also used to create objects which can be maintained as managed
 * memory and returned to a pool.  The linked list is used when freeing
 * and re-allocating the object.  These objects are reference counted
 * so that they are returned to the pool they come from automatically
 * when falling out of scope.  This can be used to create automatic
 * garbage collection pools.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT PagerObject : public LinkedObject, public CountedObject
{
protected:
	friend class PagerPool;

	PagerPool *pager;

	/**
	 * Create a pager object.  This is object is constructed by a PagerPool.
	 */
	PagerObject();

	/**
	 * Release a pager object reference.
	 */
	void release(void);

	/**
	 * Return the pager object back to it's originating pool.
	 */
	void dealloc(void);
};	

/**
 * Pager pool base class for managed memory pools.  This is a helper base
 * class for the pager template and generally is not used by itself.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT PagerPool 
{
private:
	mempager *pager;
	LinkedObject *freelist;
	pthread_mutex_t mutex;

protected:
	PagerPool(mempager *pager);
	~PagerPool();

	PagerObject *get(size_t size);

public:
	/**
	 * Return a pager object back to our free list.
	 * @param object to return to pool.
	 */
	void put(PagerObject *object);
};

/**
 * A class to hold memory pointers referenced by string names.  This is
 * used to form a typeless data pointer that can be associated and
 * referenced by string/logical name.  The memory used for forming
 * the string names can itself be managed in reusable memory pools and
 * the entire structure uses it's own private pager heap.  This allows
 * new string named pointers to be added and deleted at runtime in a thread-
 * safe manner.  This might typically be used as a session id manager or for
 * symbol tables.
 * @author David Sugar <dyfet@gnutelephony.org>
 */ 
class __EXPORT keyassoc : protected mempager
{
private:
	/**
	 * Internal paged memory residing data class for name associated pointers.
	 */
	class __LOCAL keydata : public NamedObject
	{
	public:
		void *data;
		char text[8];

		keydata(keyassoc *assoc, char *id, unsigned max, unsigned bufsize);
	};

	friend class keydata;

	unsigned count;
	unsigned paths;
	size_t keysize;
	NamedObject **root;
	LinkedObject **list;

public:
	/**
	 * Create a key associated memory pointer table.
	 * @param indexing size for hash map.
	 * @param max size of a string name if names are in reusable managed memory.
	 * @param page size of memory pager.
	 */
	keyassoc(unsigned indexing = 177, size_t max = 0, size_t page = 0);

	/**
	 * Destroy association object.  Release all pages back to the heap.
	 */
	~keyassoc();

	/**
	 * Get the number of associations we have in our object.
	 * @return number of associations stored.
	 */
	inline unsigned getCount(void)
		{return count;};

	/**
	 * Lookup the data pointer of a string by direct operation.
	 * @param name to lookup.
	 * @return pointer to data or NULL if not found.
	 */
	inline void *operator()(const char *name)
		{return locate(name);};

	/**
	 * Purge all associations and return allocated pages to heap.
	 */
	void purge(void);

	/**
	 * Lookup the data pointer by the string name given.
	 * @param name to lookup.
	 * @return pointer to data or NULL if not found.
	 */
	void *locate(const char *name);

	/**
	 * Assign a name to a data pointer.  If the name exists, it is re-assigned
	 * with the new pointer value, otherwise it is created.
	 * @param name to assign.
	 * @param pointer value to assign with name.
	 * @return false if failed because name is too long for managed table.
	 */
	bool assign(char *name, void *pointer);

	/**
	 * Create a new name in the association table and assign it's value.
	 * @param name to create.
	 * @param pointer value to assign with name.
	 * @return false if already exists or name is too long for managed table.
	 */
	bool create(char *name, void *pointer);

	/**
	 * Remove a name and pointer association.  If managed key names are used
	 * then the memory allocated for the name will be re-used.
	 * @param name to remove.
	 * @return pointer value of the name or NULL if not found.
	 */
	void *remove(const char *name);
};

/**
 * A typed template for using a key association with typed objects.
 * This essentially forms a form of "smart pointer" that is a reference
 * to specific typed objects by symbolic name.  This is commonly used as
 * for associated indexing of typed objects.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template <class T, unsigned I = 177, size_t M = 0, size_t P = 0>
class assoc_pointer : private keyassoc
{
public:
	/**
	 * Construct an associated pointer hash map based on the class template.
	 */
	inline assoc_pointer() : keyassoc(I, M, P) {};

	/**
	 * Get the count of typed objects stored in our hash map.
	 * @return typed objects in map.
	 */
	inline unsigned getCount(void)
		{return keyassoc::getCount();};

	/**
	 * Purge the hash map of typed objects.
	 */
	inline void purge(void)
		{keyassoc::purge();};

	/**
	 * Lookup a typed object by name.
	 * @param name of typed object to locate.
	 * @return typed object pointer or NULL if not found.
	 */
	inline T *locate(const char *name)
		{return static_cast<T*>(keyassoc::locate(name));};

	/**
	 * Reference a typed object directly by name.
	 * @param name of typed object to locate.
	 * @return typed object pointer or NULL if not found.
	 */
	inline T *operator()(const char *name)
		{return locate(name);};

	/**
	 * Assign a name for a pointer to a typed object.  If the name exists, 
	 * it is re-assigned with the new pointer value, otherwise it is created.
	 * @param name to assign.
	 * @param pointer of typed object to assign with name.
	 * @return false if failed because name is too long for managed table.
	 */
	inline bool assign(char *name, T *pointer)
		{return keyassoc::assign(name, pointer);};

	/**
	 * Create a new name in the association table and assign typed object.
	 * @param name to create.
	 * @param pointer of typed object to assign with name.
	 * @return false if already exists or name is too long for managed table.
	 */
	inline bool create(char *name, T *pointer)
		{return keyassoc::create(name, pointer);};

	/**
	 * Remove a name and typed pointer association.  If managed key names are 
	 * used then the memory allocated for the name will be re-used.
	 * @param name to remove.
	 */
	inline void remove(char *name)
		{keyassoc::remove(name);};

	/**
	 * Access to pager utilization stats.  This is needed because we
	 * inherit keyassoc privately.
	 * @return pager utilization, 0-100.
	 */
	inline unsigned utilization(void)
		{return mempager::utilization();};

	/**
	 * Access to number of pages allocated from heap for our associated
	 * index pointer.  This is needed because we inherit keyassoc
	 * privately.
	 * @return count of heap pages used.
	 */
	inline unsigned getPages(void)
		{return mempager::getPages();};
};

/**
 * Mempager managed type factory for pager pool objects.  This is used to
 * construct a type factory that creates and manages typed objects derived
 * from PagerObject which can be managed through a private heap.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template <class T>
class pager : private PagerPool
{
public:
	/**
	 * Construct a pager and optionally assign a private pager heap.
	 * @param heap pager to use.  If NULL, uses global heap.
	 */
	inline pager(mempager *heap = NULL) : PagerPool(heap) {};

	/**
	 * Purge managed objects.
	 */
	inline ~pager()
		{mempager::purge();};

	/**
	 * Create a managed object by casting reference.
	 * @return pointer to typed managed pager pool object.
	 */
	inline T *operator()(void)
		{return new(get(sizeof(T))) T;};

	/**
	 * Create a managed object by pointer reference.
	 * @return pointer to typed managed pager pool object.
	 */
	inline T *operator*()
		{return new(get(sizeof(T))) T;};
};

/**
 * A templated class for a hash pager.  This creates objects from a pager
 * pool when they do not already exist in the hash map.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template <class T, unsigned M = 177>
class keypager : public mempager
{
private:
	NamedObject *idx[M];

public:
	/**
	 * Create the object cache.
	 * @param size of allocation units.
	 */
	inline keypager(size_t size) : mempager(size) {};

	/**
	 * Destroy the hash pager by purging the index chains and memory pools.
	 */
	inline ~keypager()
		{NamedObject::purge(idx, M); mempager::purge();};

	/**
	 * Find a typed object derived from NamedObject in the hash map by name.
	 * If the object is not found, it is created from the memory pool.
	 * @param name to search for.
	 * @return typed object if found through map or NULL.
	 */
	inline T *get(const char *name) const {
		T *node = (static_cast<T*>(NamedObject::map(idx, name, M)));
		if(!node) {
			node = init<T>(static_cast<T*>(mempager::alloc(sizeof(T))));
			node->NamedObject::add(idx, name, M);
		}
		return node;
	}

	/**
	 * Test if a name exists in the pool.
	 * @param name to test.
	 * @return true if found.
	 */
	bool test(const char *name) const
		{return NamedObject::map(idx, name, M) != NULL;};

	/**
	 * Find a typed object derived from NamedObject in the hash map by name.
	 * If the object is not found, it is created from the pager pool.
	 * @param name to search for.
	 * @return typed object if found through map or NULL.
	 */
	inline T *operator[](const char *name) const
		{return get(name);};

	/**
	 * Find first typed object in hash map to iterate.
	 * @return first typed object or NULL if nothing in list.
	 */
	inline T *begin(void) const
		{return static_cast<T*>(NamedObject::skip(idx, NULL, M));};

	/**
	 * Find next typed object in hash map for iteration.
	 * @param current typed object we are referencing.
	 * @return next iterative object or NULL if past end of map.
	 */
	inline T *next(T *current) const
		{return static_cast<T*>(NamedObject::skip(idx, current, M));};

	/**
	 * Count the number of typed objects in our hash map.
	 * @return count of typed objects.
	 */
	inline unsigned count(void) const
		{return NamedObject::count(idx, M);};

	/**
	 * Convert our hash map into a linear object pointer array.  The
	 * object pointer array is created from the heap and must be deleted
	 * when no longer used.
	 * @return array of typed named object pointers.
	 */
	inline T **index(void) const
		{return NamedObject::index(idx, M);};

	/**
	 * Convert our hash map into an alphabetically sorted linear object 
	 * pointer array.  The object pointer array is created from the heap 
	 * and must be deleted when no longer used.
	 * @return sorted array of typed named object pointers.
	 */
	inline T **sort(void) const
		{return NamedObject::sort(NamedObject::index(idx, M));};
}; 

END_NAMESPACE

#endif