This file is indexed.

/usr/include/Wt/WPainter is in libwt-dev 3.1.10-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
// This may look like C code, but it's really -*- C++ -*-
/*
 * Copyright (C) 2008 Emweb bvba, Kessel-Lo, Belgium.
 *
 * See the LICENSE file for terms of use.
 */
#ifndef WPAINTER_H_
#define WPAINTER_H_

#include <Wt/WBrush>
#include <Wt/WFont>
#include <Wt/WGlobal>
#include <Wt/WPainterPath>
#include <Wt/WPen>
#include <Wt/WShadow>
#include <Wt/WTransform>

namespace Wt {

class WLineF;
class WPaintDevice;
class WPainterPath;
class WPointF;
class WRectF;

/*! \defgroup painting Painting system
    \brief Classes that provide support for vector graphics painting

  %Wt provides a vector graphics painting system, which depending on
  the browser support, uses one of four different methods to paint the
  graphics (inline SVG, inline VML, HTML 5 &lt;canvas&gt; or a raster
  image). Vector graphics has as benefit a lower bandwidth usage
  compared to raster images, indepedent of the image size. To use the
  paint system, you need to specialize WPaintedWidget and use a
  WPainter to paint the contents of the widget inside its
  WPaintedWidget::paintEvent().

  In addition, a PDF backend is included in the library, which can be used
  to make a PDF version of a painting, or to embed a painting in a
  PDF document.

  To use inline SVG, you need to enable xhtml support in your
  configuration file by enabling send-xhtml-mimetype, see \ref
  config_general.
*/

/*! \class WPainter Wt/WPainter Wt/WPainter
 *  \brief Vector graphics painting class.
 *
 * The painter class provides a vector graphics interface for
 * painting. It needs to be used in conjunction with a WPaintDevice,
 * onto which it paints. To start painting on a device, either pass
 * the device through the constructor, or use begin().
 *
 * A typical use is to instantiate a %WPainter from within a
 * specialized WPaintedWidget::paintEvent() implementation, to paint
 * on the given paint device, but you can also use a painter to paint
 * directly to a particular paint device of choice, for example to
 * create SVG, PDF or PNG images (as resources).
 *
 * The painter maintains state such as the current \link setPen()
 * pen\endlink, \link setBrush() brush\endlink, \link setFont()
 * font\endlink, \link shadow() shadow\endlink, \link worldTransform()
 * transformation\endlink and clipping settings (see setClipping() and
 * setClipPath()). A particular state can be saved using save() and
 * later restored using restore().
 *
 * The painting system distinguishes between device coordinates,
 * logical coordinates, and local coordinates. The device coordinate
 * system ranges from (0, 0) in the top left corner of the device, to
 * (device->width().toPixels(), device->height().toPixels()) for the
 * bottom right corner. The logical coordinate system defines a
 * coordinate system that may be chosen independent of the geometry of
 * the device, which is convenient to make abstraction of the actual
 * device size. Finally, the current local coordinate system may be
 * different from the logical coordinate system because of a
 * transformation set (using translate(), rotate(), and
 * scale()). Initially, the local coordinate system coincides with the
 * logical coordinate system, which coincides with the device
 * coordinate system.
 *
 * The device coordinates are defined in terms of pixels. Even though
 * most underlying devices are actual vector graphics formats, when
 * used in conjunction with a WPaintedWidget, these vector graphics
 * are rendered by the browser onto a pixel-based canvas (like the
 * rest of the user-interface). The coordinates are defined such that
 * integer values correspond to an imaginary raster which separates
 * the individual pixels, as in the figure below.
 *
 * \image html WPainter.png "The device coordinate system for a 6x5 pixel device"
 *
 * As a consequence, to avoid anti-aliasing effects when drawing
 * straight lines of width one pixel, you will need to use vertices
 * that indicate the middle of a pixel to get a crisp one-pixel wide
 * line, as in the example figure.
 *
 * By setting a viewPort() and a window(), a viewPort transformation
 * is defined which maps logical coordinates onto device
 * coordinates. By changing the world transformation (using
 * setWorldTransform(), or translate(), rotate(), scale() operations),
 * it is defined how current local coordinates map onto logical
 * coordinates.
 *
 * The painter provides support for clipping using an arbitrary \link
 * WPainterPath path\endlink, but not that the %VmlImage only has
 * limited support for clipping.
 *
 * \if cpp
 * Usage example:
 * \code
 * class MyPaintedWidget : public Wt::WPaintedWidget
 * {
 * public:
 *   MyPaintedWidget(Wt::WContainerWidget *parent = 0)
 *     : Wt::WPaintedWidget(parent),
 *       foo_(100)
 *   {
 *      resize(200, 200); // provide a default size
 *   }
 *
 *   void setFoo(int foo) {
 *      foo_ = foo;
 *      update(); // trigger a repaint
 *   }
 *
 * protected:
 *   void paintEvent(Wt::WPaintDevice *paintDevice) {
 *     Wt::WPainter painter(paintDevice);
 *     painter.drawLine(20, 20, foo_, foo_);
 *     ...
 *   }
 *
 * private:
 *   int foo_;
 * };
 * \endcode
 * \endif
 *
 * \sa WPaintedWidget::paintEvent(WPaintDevice *)
 *
 * \ingroup painting
 */
class WT_API WPainter
{
public:
  /*! \brief Enumeration for render hints
   */
  enum RenderHint {
    Antialiasing = 1, //!< Antialiasing
    LowQualityShadows = 2  //!< Use low-quality shadows (applies only to VML)
  };

  /*! \brief Default constructor.
   *
   * Before painting, you must invoke begin(WPaintDevice *) on a paint device.
   *
   * \sa WPainter(WPaintDevice *)
   */
  WPainter();

  /*! \brief Creates a painter on a given paint device.
   */
  WPainter(WPaintDevice *device);

  /*! \brief Destructor.
   */
  ~WPainter();

  /*! \brief Begins painting on a paint device.
   *
   * \sa end(), isActive()
   */
  bool begin(WPaintDevice *device);

  /*! \brief Returns whether this painter is active on a paint device.
   *
   * \sa begin(WPaintDevice *), end()
   */
  bool isActive() const;

  /*! \brief Ends painting.
   *
   * \if cpp
   * This method is called automatically from the destructor.
   * \endif
   */
  bool end();

  /*! \brief Returns the device on which this painter is active (or 0 if not active).
   *
   * \sa begin(WPaintDevice *), WPainter(WPaintDevice *), isActive()
   */
  WPaintDevice *device() const { return device_; }

  /*! \brief Sets a render hint.
   *
   * Renderers may ignore particular hints for which they have no
   * support.
   */
  void setRenderHint(RenderHint hint, bool on = true);

  /*! \brief Returns the current render hints.
   *
   * Returns the logical OR of render hints currently set.
   *
   * \sa setRenderHint(RenderHint, bool).
   */
  int renderHints() const { return s().renderHints_; }

  /*! \brief Draws an arc.
   *
   * Draws an arc using the current pen, and fills using the current brush.
   *
   * The arc is defined as a segment from an ellipse, which fits in
   * the <i>rectangle</i>. The segment starts at \p startAngle, and
   * spans an angle given by \p spanAngle. These angles have as
   * unit 1/16th of a degree, and are measured counter-clockwise
   * starting from the 3 o'clock position.
   *
   * \sa drawEllipse(const WRectF&), drawChord(const WRectF&, int, int)
   * \sa drawArc(double, double, double, double, int, int)
   */
  void drawArc(const WRectF& rectangle, int startAngle, int spanAngle);

  /*! \brief Draws an arc.
   *
   * This is an overloaded method for convenience.
   *
   * \sa drawArc(const WRectF&, int, int)
   */
  void drawArc(double x, double y, double width, double height,
	       int startAngle, int spanAngle);

  /*! \brief Draws a chord.
   *
   * Draws an arc using the current pen, and connects start and end
   * point with a line. The area is filled using the current brush.
   *
   * The arc is defined as a segment from an ellipse, which fits in
   * the <i>rectangle</i>. The segment starts at \p startAngle, and
   * spans an angle given by \p spanAngle. These angles have as
   * unit 1/16th of a degree, and are measured counter-clockwise
   * starting at 3 o'clock.
   *
   * \sa drawEllipse(const WRectF&), drawArc(const WRectF&, int, int)
   * \sa drawChord(double, double, double, double, int, int)
   */
  void drawChord(const WRectF& rectangle, int startAngle, int spanAngle);

  /*! \brief Draws a chord.
   *
   * This is an overloaded method for convenience.
   *
   * \sa drawChord(const WRectF&, int, int)
   */
  void drawChord(double x, double y, double width, double height,
		 int startAngle, int spanAngle);

  /*! \brief Draws an ellipse.
   *
   * Draws an ellipse using the current pen and fills it using the
   * current brush.
   *
   * The ellipse is defined as being bounded by the \p rectangle.
   *
   * \sa drawArc(const WRectF&, int, int)
   * \sa drawEllipse(double, double, double, double)
   */
  void drawEllipse(const WRectF& rectangle);

  /*! \brief Draws an ellipse.
   *
   * This is an overloaded method for convenience.
   *
   * \sa drawEllipse(const WRectF&)
   */
  void drawEllipse(double x, double y, double width, double height);

  /*! \brief An image that can be rendered on a WPainter.
   *
   * The image is specified in terms of a URL, and the width and
   * height.
   *
   * \sa drawImage()
   */
  class WT_API Image {
  public:
    /*! \brief Creates an image.
     *
     * Create an image which is located at the <i>uri</i>, and which has
     * dimensions <i>width</i> x <i>height</i>.
     */
    Image(const std::string& uri, int width, int height);

    /*! \brief Creates an image.
     *
     * Create an image which is located at <i>uri</i> which is available on
     * the local filesystem as <i>file</i>. The image dimensions are
     * retrieved from the file.
     */
    Image(const std::string& uri, const std::string& file);

    /*! \brief Returns the uri.
     */
    std::string uri() const { return uri_; }

    /*! \brief Returns the image width.
     */
    int width() const { return width_; }

    /*! \brief Returns the image height.
     */
    int height() const { return height_; }

  private:
    std::string uri_;
    int width_, height_;
  };

  /*! \brief Draws an image.
   *
   * Draws the \p image so that the top left corner corresponds to
   * \p point.
   *
   * This is an overloaded method provided for convenience.
   */
  void drawImage(const WPointF& point, const Image& image);

  /*! \brief Draws part of an image.
   *
   * Draws the \p sourceRect rectangle from an image to the
   * location \p point.
   *
   * This is an overloaded method provided for convenience.
   */
  void drawImage(const WPointF& point, const Image& image,
		 const WRectF& sourceRect);

  /*! \brief Draws an image inside a rectangle.
   *
   * Draws the <i>image</i> inside \p rect (If necessary, the image
   * is scaled to fit into the rectangle).
   *
   * This is an overloaded method provided for convenience.
   */
  void drawImage(const WRectF& rect, const Image& image);

  /*! \brief Draws part of an image inside a rectangle.
   *
   * Draws the \p sourceRect rectangle from an image inside
   * \p rect (If necessary, the image is scaled to fit into the
   * rectangle).
   */
  void drawImage(const WRectF& rect, const Image& image,
		 const WRectF& sourceRect);

  /*! \brief Draws part of an image.
   *
   * Draws the \p sourceRect rectangle with top left corner
   * (<i>sx</i>, <i>sy</i>) and size <i>sw</i> x \p sh from an
   * image to the location (<i>x</i>, \p y).
   */
  void drawImage(double x, double y, const Image& image,
		 double sx = 0, double sy = 0, double sw = -1, double sh = -1);

  /*! \brief Draws a line.
   *
   * Draws a line using the current pen.
   *
   * \sa drawLine(const WPointF&, const WPointF&),
   *     drawLine(double, double, double, double)
   */  
  void drawLine(const WLineF& line);

  /*! \brief Draws a line.
   *
   * Draws a line defined by two points.
   *
   * \sa drawLine(const WLineF&),
   *     drawLine(double, double, double, double)
   */  
  void drawLine(const WPointF& p1, const WPointF& p2);

  /*! \brief Draws a line.
   *
   * Draws a line defined by two points.
   *
   * \sa drawLine(const WLineF&),
   *     drawLine(const WPointF&, const WPointF&)
   */  
  void drawLine(double x1, double y1, double x2, double y2);

  /*! \brief Draws an array of lines.
   *
   * Draws the \p lineCount first lines from the given array of lines.
   */  
  void drawLines(const WT_ARRAY WLineF *lines, int lineCount);

  /*! \brief Draws an array of lines.
   *
   * Draws \p lineCount lines, where each line is specified using
   * a begin and end point that are read from an array. Thus, the
   * <i>pointPairs</i> array must have at least 2*\p lineCount
   * points.
   */
  void drawLines(const WT_ARRAY WPointF *pointPairs, int lineCount);

  /*! \brief Draws an array of lines.
   *
   * Draws the lines given in the vector.
   */  
  void drawLines(const std::vector<WLineF>& lines);

  /*! \brief Draws an array of lines.
   *
   * Draws a number of lines that are specified by pairs of begin- and
   * endpoints. The vector should hold a number of points that is a
   * multiple of two.
   */  
  void drawLines(const std::vector<WPointF>& pointPairs);

  /*! \brief Draws a (complex) path.
   *
   * Draws and fills the given path using the current pen and brush.
   *
   * \sa strokePath(const WPainterPath&, const WPen&),
   *     fillPath(const WPainterPath&, const WBrush&)
   */  
  void drawPath(const WPainterPath& path);

  /*! \brief Draws a pie.
   *
   * Draws an arc using the current pen, and connects start and end
   * point with the center of the corresponding ellipse. The area is
   * filled using the current brush.
   *
   * The arc is defined as a segment from an ellipse, which fits in
   * the <i>rectangle</i>. The segment starts at \p startAngle, and
   * spans an angle given by \p spanAngle. These angles have as
   * unit 1/16th of a degree, and are measured counter-clockwise
   * starting at 3 o'clock.
   *
   * \sa drawEllipse(const WRectF&), drawArc(const WRectF&, int, int)
   * \sa drawPie(double, double, double, double, int, int)
   */
  void drawPie(const WRectF& rectangle, int startAngle, int spanAngle);

  /*! \brief Draws a pie.
   *
   * This is an overloaded method for convenience.
   *
   * \sa drawPie(const WRectF&, int, int)
   */
  void drawPie(double x, double y, double width, double height,
	       int startAngle, int spanAngle);

  /*! \brief Draws a point.
   *
   * Draws a single point using the current pen. This is implemented
   * by drawing a very short line, centered around the given \p
   * position. To get the result of a single point, you should use a
   * pen with a Wt::SquareCap or Wt::RoundCap pen cap style.
   *
   * \sa drawPoint(double, double)
   */
  void drawPoint(const WPointF& position);

  /*! \brief Draws a point.
   *
   * This is an overloaded method for convenience.
   *
   * \sa drawPoint(const WPointF&)
   */
  void drawPoint(double x, double y);

  /*! \brief Draws a number of points.
   *
   * Draws the \p pointCount first points from the given array of points.
   *
   * \sa drawPoint(const WPointF&)
   */
  void drawPoints(const WT_ARRAY WPointF *points, int pointCount);

  /*! \brief Draws a polygon.
   *
   * Draws a polygon that is specified by a list of points, using the
   * current pen. The polygon is closed by connecting the last point
   * with the first point, and filled using the current brush.
   *
   * \sa drawPath(const WPainterPath&), drawPolyline()
   */
  void drawPolygon(const WT_ARRAY WPointF *points, int pointCount
		   /*, FillRule fillRule */);

  /*! \brief Draws a polyline.
   *
   * Draws a polyline that is specified by a list of points, using the
   * current pen.
   *
   * \sa drawPath(const WPainterPath&), drawPolygon()
   */
  void drawPolyline(const WT_ARRAY WPointF *points, int pointCount);

  /*! \brief Draws a rectangle.
   *
   * Draws and fills a rectangle using the current pen and brush.
   *
   * \sa drawRect(double, double, double, double)
   */
  void drawRect(const WRectF& rectangle);

  /*! \brief Draws a rectangle.
   *
   * This is an overloaded method for convenience.
   *
   * \sa drawRect(const WRectF&)
   */
  void drawRect(double x, double y, double width, double height);

  /*! \brief Draws a number of rectangles.
   *
   * Draws and fills the \p rectCount first rectangles from the
   * given array, using the current pen and brush.
   *
   * \sa drawRect(const WRectF&)
   */
  void drawRects(const WT_ARRAY WRectF *rectangles, int rectCount);

  /*! \brief Draws a number of rectangles.
   *
   * Draws and fills a list of rectangles using the current pen and
   * brush.
   *
   * \sa drawRect(const WRectF&)
   */
  void drawRects(const std::vector<WRectF>& rectangles);
  
  /*! \brief Draws text.
   *
   * Draws text using inside the rectangle, using the current font. The
   * text is aligned inside the rectangle following alignment
   * indications given in \p flags. The text is drawn using the
   * current transformation, pen color (pen()) and font settings
   * (font()).
   *
   * AlignmentFlags is the logical OR of a horizontal and vertical
   * alignment. Horizontal alignment may be one of AlignLeft,
   * AlignCenter, or AlignRight. Vertical alignment is one of
   * AlignTop, AlignMiddle or AlignBottom.
   *
   * TextFlag determines how the text is rendered in the rectangle.
   * Text can be rendered on one line or by wrapping the words within the 
   * rectangle.
   *
   * \note HtmlCanvas: on older browsers implementing Html5 canvas,
   * text will be rendered horizontally (unaffected by rotation and
   * unaffected by the scaling component of the transformation
   * matrix). In that case, text is overlayed on top of painted shapes
   * (in DOM div's), and is not covered by shapes that are painted
   * after the text. Use the SVG and VML renderers
   * (WPaintedWidget::inlineSvgVml) for the most accurate font
   * rendering. Native HTML5 text rendering is supported on Firefox3+,
   * Chrome2+ and Safari4+.
   *
   * \note TextWordWrap: using the TextWordWrap TextFlag is currently only 
   * supported by the SVG backend. The code generated by the SVG backend uses
   * features currently only supported by Inkscape. Inkscape currently supports
   * only Top vertical alignments.
   */
  void drawText(const WRectF& rect, 
		WFlags<AlignmentFlag> alignmentFlags,
		TextFlag textFlag,
		const WString& text);

  /*! \brief Draws text.
   *
   * This is an overloaded method for convenience, it will render text on a 
   * single line.
   *
   * \sa drawText(const WRectF&, WFlags<AlignmentFlag>, TextFlag textFlag, const WString&)
   */
  void drawText(const WRectF& rectangle, WFlags<AlignmentFlag> flags,
		const WString& text);
  
  /*! \brief Draws text.
   *
   * This is an overloaded method for convenience.
   *
   * \sa drawText(const WRectF&, WFlags<AlignmentFlag>, const WString&)
   */
  void drawText(double x, double y, double width, double height,
		WFlags<AlignmentFlag> flags, const WString& text);
  
  /*! \brief Draws text.
   *
   * This is an overloaded method for convenience.
   *
   * \sa drawText(const WRectF& rect, 
   *		 WFlags<AlignmentFlag> alignmentFlags,
   *		 TextFlag textFlag,
   *		 const WString& text)
   */
  void drawText(double x, double y, double width, double height, 
		WFlags<AlignmentFlag> alignmentFlags,
		TextFlag textFlag,
		const WString& text);

  /*! \brief Fills a (complex) path.
   *
   * Like drawPath(const WPainterPath&), but does not stroke the path,
   * and fills the path with the given \p brush.
   *
   * \sa drawPath(const WPainterPath&), strokePath(const WPainterPath&, const WPen&)
   */
  void fillPath(const WPainterPath& path, const WBrush& brush);

  /*! \brief Fills a rectangle.
   *
   * Like drawRect(const WRectF&), but does not stroke the rect, and
   * fills the rect with the given \p brush.
   *
   * \sa drawRect(const WRectF&)
   */
  void fillRect(const WRectF& rectangle, const WBrush& brush);

  /*! \brief Fills a rectangle.
   *
   * This is an overloaded method for convenience.
   *
   * \sa fillRect(const WRectF&, const WBrush&)
   */
  void fillRect(double x, double y, double width, double height,
		const WBrush& brush);

  /*! \brief Strokes a path.
   *
   * Like drawPath(const WPainterPath&), but does not fill the path,
   * and strokes the path with the given \p pen.
   *
   * \sa drawPath(const WPainterPath&), fillPath(const WPainterPath&, const WBrush&)
   */
  void strokePath(const WPainterPath& path, const WPen& pen);

  /*! \brief Sets a shadow effect.
   *
   * The shadow effect is applied to all things drawn (paths, text and images).
   *
   * \note With the VML backend (IE), the shadow is not applied to images,
   *       and the shadow color is always black; only the opacity (alpha)
   *       channel is taken into account.
   * \sa LowQualityShadows
   */
  void setShadow(const WShadow& shadow);

  /*! \brief Returns the current shadow effect.
   *
   * \sa setShadow()
   */
  const WShadow& shadow() const { return s().currentShadow_; }

  /*! \brief Sets the fill style.
   *
   * Changes the fills style for subsequent draw operations.
   *
   * \sa brush(), setPen(const WPen&)
   */
  void setBrush(const WBrush& brush);

  /*! \brief Sets the font.
   *
   * Changes the font for subsequent text rendering. Note that only
   * font sizes that are defined as an explicit size (see
   * WFont::FixedSize) will render correctly in all devices (SVG, VML,
   * and HtmlCanvas).
   *
   * \sa font(), drawText()
   */
  void setFont(const WFont& font);

  /*! \brief Sets the pen.
   *
   * Changes the pen used for stroking subsequent draw operations.
   *
   * \sa pen(), setBrush(const WBrush&)
   */
  void setPen(const WPen& pen);

  /*! \brief Returns the current brush.
   *
   * Returns the brush style that is currently used for filling.
   *
   * \sa setBrush(const WBrush&)
   */
  const WBrush& brush() const { return s().currentBrush_; }

  /*! \brief Returns the current font.
   *
   * Returns the font that is currently used for rendering text.
   * The default font is a 10pt sans serif font.
   *
   * \sa setFont(const WFont&)
   */
  const WFont& font() const { return s().currentFont_; }

  /*! \brief Returns the current pen.
   *
   * Returns the pen that is currently used for stroking.
   *
   * \sa setPen(const WPen&)
   */
  const WPen& pen() const { return s().currentPen_; }

  /*! \brief Enables or disables clipping.
   *
   * Enables are disables clipping for subsequent operations using the
   * current clip path set using setClipPath().
   *
   * \p Note: Clipping is not supported for the VML renderer.
   *
   * \sa hasClipping(), setClipPath(const WPainterPath&)
   */
  void setClipping(bool enable);

  /*! \brief Returns whether clipping is enabled.
   *
   * \p Note: Clipping is not supported for the VML renderer.
   *
   * \sa setClipping(bool), setClipPath(const WPainterPath&)
   */
  bool hasClipping() const { return s().clipping_; }

  /*! \brief Sets the clip path.
   *
   * Sets the path that is used for clipping subsequent drawing
   * operations. The clip path is only used when clipping is enabled
   * using setClipping(bool). The path is specified in local
   * coordinates.
   *
   * <i>Note: Only clipping with a rectangle is supported for the VML
   *    renderer (see WPainterPath::addRect()). The rectangle must,
   *    after applying the combined transformation system, be aligned
   *    with the window.</i>
   *
   * \sa clipPath(), setClipping(bool)
   */
  void setClipPath(const WPainterPath& clipPath);

  /*! \brief Returns the clip path.
   *
   * The clip path is returned as it was defined: in the local
   * coordinates at time of definition.
   *
   * \sa setClipPath(const WPainterPath&)
   */
  WPainterPath clipPath() const { return s().clipPath_; }

  /*! \brief Resets the current transformation.
   *
   * Resets the current transformation to the identity transformation
   * matrix, so that the logical coordinate system coincides with the
   * device coordinate system.
   */
  void resetTransform();

  /*! \brief Rotates the logical coordinate system.
   *
   * Rotates the logical coordinate system around its origin. The
   * \p angle is specified in degrees, and positive values are
   * clock-wise.
   *
   * \sa scale(double, double), translate(double, double), resetTransform()
   */
  void rotate(double angle);

  /*! \brief Scales the logical coordinate system.
   *
   * Scales the logical coordinate system around its origin, by a factor
   * in the X and Y directions.
   *
   * \sa rotate(double), translate(double, double), resetTransform()
   */
  void scale(double sx, double sy);

  /*! \brief Translates the origin of the logical coordinate system.
   *
   * Translates the origin of the logical coordinate system to a new
   * location relative to the current logical coordinate system.
   *
   * \sa translate(double, double), rotate(double),
   *     scale(double, double), resetTransform()
   */
  void translate(const WPointF& offset);

  /*! \brief Translates the origin of the logical coordinate system.
   *
   * Translates the origin of the logical coordinate system to a new
   * location relative to the logical coordinate system.
   *
   * \sa translate(const WPointF& offset), rotate(double),
   *     scale(double, double), resetTransform()
   */
  void translate(double dx, double dy);

  /*! \brief Sets a transformation for the logical coordinate system.
   *
   * Sets a new transformation which transforms logical coordinates to
   * device coordinates. When \p combine is \c true, the
   * transformation is combined with the current world transformation
   * matrix.
   *
   * \sa worldTransform()
   * \sa rotate(double), scale(double, double), translate(double, double)
   * \sa resetTransform()
   */
  void setWorldTransform(const WTransform& matrix, bool combine = false);

  /*! \brief Returns the current world transformation matrix.
   *
   * \sa setWorldTransform()
   */
  const WTransform& worldTransform() const { return s().worldTransform_; }

  /*! \brief Saves the current state.
   *
   * A copy of the current state is saved on a stack. This state will
   * may later be restored by popping this state from the stack using
   * restore().
   *
   * The state that is saved is the current \link setPen()
   * pen\endlink, \link setBrush() brush\endlink, \link setFont()
   * font\endlink, \link shadow() shadow\endlink, \link
   * worldTransform() transformation\endlink and clipping settings
   * (see setClipping() and setClipPath()).
   *
   * \sa restore()
   */
  void save();

  /*! \brief Returns the last save state.
   *
   * Pops the last saved state from the state stack.
   *
   * \sa save()
   */
  void restore();

  /*! \brief Sets the viewport.
   *
   * Selects the part of the device that will correspond to the logical
   * coordinate system.
   *
   * By default, the viewport spans the entire device: it is the
   * rectangle (0, 0) to (device->width(), device->height()). The
   * window defines how the viewport is mapped to logical coordinates.
   *
   * \sa viewPort(), setWindow(const WRectF&)
   */
  void setViewPort(const WRectF& viewPort);

  /*! \brief Sets the viewport.
   *
   * This is an overloaded method for convenience.
   *
   * \sa setViewPort(const WRectF&)
   */
  void setViewPort(double x, double y, double width, double height);

  /*! \brief Returns the viewport.
   *
   * \sa setViewPort(const WRectF&)
   */
  WRectF viewPort() const { return viewPort_; }

  /*! \brief Sets the window.
   *
   * Defines the viewport rectangle in logical coordinates, and thus how
   * logical coordinates map onto the viewPort.
   *
   * By default, is (0, 0) to (device->width(), device->height()). Thus,
   * the default window and viewport leave logical coordinates identical
   * to device coordinates.
   *
   * \sa window(), setViewPort(const WRectF&)
   */
  void setWindow(const WRectF& window);

  /*! \brief Sets the window.
   *
   * This is an overloaded method for convenience.
   *
   * \sa setWindow(const WRectF&)
   */
  void setWindow(double x, double y, double width, double height);

  /*! \brief Returns the current window.
   *
   * \sa setViewPort(const WRectF&)
   */
  WRectF window() const { return window_; }

  /*! \brief Returns the combined transformation matrix.
   *
   * Returns the transformation matrix that maps coordinates to device
   * coordinates. It is the combination of the current world
   * transformation (which defines the transformation within the
   * logical coordinate system) and the window/viewport transformation
   * (which transforms logical coordinates to device coordinates).
   *
   * \sa setWorldTransform(), setViewPort(), setWindow()
   */
  WTransform combinedTransform() const;

  const WTransform& clipPathTransform() const;

  WLength normalizedPenWidth(const WLength& penWidth, bool correctCosmetic)
    const;

private:
  WPaintDevice *device_;
  WRectF        viewPort_, window_;
  WTransform    viewTransform_;

  struct State {
    WTransform    worldTransform_;
    WBrush        currentBrush_;
    WFont         currentFont_;
    WPen          currentPen_;
    WShadow       currentShadow_;
    int           renderHints_;
    WPainterPath  clipPath_;
    WTransform    clipPathTransform_;
    bool          clipping_;

    State();

#ifdef WT_TARGET_JAVA
    State clone();
#endif
  };

  std::vector<State> stateStack_;

  State& s() { return stateStack_.back(); }
  const State& s() const { return stateStack_.back(); }

  void recalculateViewTransform();

  void drawMultilineText(const WRectF& rect, 
			 WFlags<AlignmentFlag> alignmentFlags,
			 const WString& text);
};

}

/*! @} */

#endif // WPAINTER_H_