/usr/share/pyshared/mayavi/tools/camera.py is in mayavi2 4.0.0-3build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 | """
Controlling the camera.
"""
# Author: Gael Varoquaux and Prabhu Ramachandran
# Copyright (c) 2007-2008, Enthought, Inc.
# License: BSD Style.
# Standard library imports.
try:
import numpy as np
except ImportError, m:
msg = '''%s\n%s\nPlease check your numpy installation. If you need numpy,
'easy_install numpy' will install it.
http://numpy.scipy.org
''' % (m, '_'*80)
raise ImportError(msg)
from numpy import pi
# We can't use gcf, as it creates a circular import in camera management
# routines.
from engine_manager import get_engine
def world_to_display(x, y, z, figure=None):
""" Converts 3D world coordinates to screenshot pixel coordinates.
**Parameters**
:x: float
World x coordinate
:y: float
World y coordinate
:z: float
World z coordinate
:figure: Mayavi figure or None
The figure to use for the conversion. If None, the
current one is used.
**Output**
:x: float
Screenshot x coordinate
:y: float
Screenshot y coordinate
"""
if figure is None:
f = get_engine().current_scene
else:
f = figure
if f is None or f.scene is None:
return 0, 0
f.scene._renderer.world_point = [x, y, z, 1]
f.scene._renderer.world_to_display()
x, y, _ = f.scene._renderer.display_point
return x, y
def roll(roll=None, figure=None):
""" Sets or returns the absolute roll angle of the camera.
**See also**
:mlab.view: control the position and direction of the camera
"""
if figure is None:
f = get_engine().current_scene
else:
f = figure
if f is None:
return
scene = f.scene
if scene is None:
return
cam = scene.camera
if roll is not None:
cam.set_roll(roll)
if not scene.disable_render:
scene.render()
return cam.get_roll()
def rad2deg(rad):
"""Converts radians to degrees."""
return rad*180./pi
def deg2rad(deg):
"""Converts degrees to radians."""
return deg*pi/180.
def get_camera_direction(cam):
""" Return the polar coordinates for the camera position:
r, theta, phi, as well as the focal point.
"""
fp = cam.focal_point
pos = cam.position
x, y, z = pos - fp
r = np.sqrt(x*x + y*y + z*z)
theta = np.arccos(z/r)
phi = np.arctan2(y, x)
return r, theta, phi, fp
def get_outline_bounds(figure=None):
""" Return the pixel bounds of the objects visible on the figure.
"""
if figure is None:
f = get_engine().current_scene
else:
f = figure
if f is None:
return
scene = f.scene
if scene is None:
return 1, 1, 1, 1
# Lazy import, to avoid circular imports
from figure import screenshot
red, green, blue = scene.background
# Use mode='rgba' to have float values, as with fig.scene.background
outline = screenshot(mode='rgba')
outline = ( (outline[..., 0] != red)
+(outline[..., 1] != green)
+(outline[..., 2] != blue)
)
outline_x = outline.sum(axis=0)
outline_y = outline.sum(axis=1)
height, width = outline.shape
width = float(width)
height = float(height)
outline_x = np.where(outline_x)[0]
outline_y = np.where(outline_y)[0]
if len(outline_x) == 0:
x_min = x_max = .5*width
else:
x_min = outline_x.min()
x_max = outline_x.max()
if len(outline_y) == 0:
y_min = y_max = .5*height
else:
y_min = outline_y.min()
y_max = outline_y.max()
return x_min, x_max, y_min, y_max, width, height
def view(azimuth=None, elevation=None, distance=None, focalpoint=None,
reset_roll=True, figure=None):
""" Sets/Gets the view point for the camera.
view(azimuth=None, elevation=None, distance=None, focalpoint=None,
figure=None)
If called with no arguments this returns the current view of the
camera. To understand how this function works imagine the surface
of a sphere centered around the visualization. The `azimuth`
argument specifies the angle "phi" on the x-y plane which varies
from 0-360 degrees. The `elevation` argument specifies the angle
"theta" from the z axis and varies from 0-180 degrees. The
`distance` argument is the radius of the sphere and the
`focalpoint`, the center of the sphere.
Note that if the `elevation` is close to zero or 180, then the
`azimuth` angle refers to the amount of rotation of a standard x-y
plot with respect to the x-axis. Thus, specifying ``view(0,0)``
will give you a typical x-y plot with x varying from left to right
and y from bottom to top.
**Keyword arguments**:
:azimuth: float, optional. The azimuthal angle (in degrees, 0-360),
i.e. the angle subtended by the position vector on a sphere
projected on to the x-y plane with the x-axis.
:elevation: float, optional. The zenith angle (in degrees, 0-180),
i.e. the angle subtended by the position vector and the z-axis.
:distance: float or 'auto', optional.
A positive floating point number representing the distance from
the focal point to place the camera. New in Mayavi 3.4.0: if
'auto' is passed, the distance is computed to have a best fit of
objects in the frame.
:focalpoint: array_like or 'auto', optional.
An array of 3 floating point numbers representing the focal point
of the camera. New in Mayavi 3.4.0: if 'auto' is passed, the
focal point is positioned at the center of all objects in the
scene.
:reset_roll: boolean, optional.
If True, the roll orientation of the camera is reset.
:figure: The Mayavi figure to operate on. If None is passed, the
current one is used.
**Returns**:
If no arguments are supplied it returns a tuple of 4 values
``(azimuth, elevation, distance, focalpoint)``, representing the
current view. Note that these can be used later on to set the view.
If arguments are supplied it returns `None`.
**Examples**:
Get the current view::
>>> v = view()
>>> v
(45.0, 45.0, 25.02794981, array([ 0.01118028, 0. , 4.00558996]))
Set the view in different ways::
>>> view(45, 45)
>>> view(240, 120)
>>> view(distance=20)
>>> view(focalpoint=(0,0,9))
Set the view to that saved in `v` above::
>>> view(*v)
**See also**
:mlab.roll: control the roll angle of the camera, ie the direction
pointing up
"""
if figure is None:
f = get_engine().current_scene
else:
f = figure
if f is None:
return
scene = f.scene
if scene is None:
return
ren = scene.renderer
cam = scene.camera
cos = np.cos
sin = np.sin
# First compute the current state of the camera.
r, theta, phi, fp = get_camera_direction(cam)
# If no arguments were specified, just return the current view.
if azimuth is None and elevation is None and distance is None \
and focalpoint is None:
return rad2deg(phi), rad2deg(theta), r, fp
# Convert radians to
if azimuth is None:
azimuth = rad2deg(phi)
else:
phi = deg2rad(azimuth)
if elevation is None:
elevation = rad2deg(theta)
else:
theta = deg2rad(elevation)
# We compute the position of the camera on the surface of a sphere
# centered at the center of the bounds, with radius chosen from the
# bounds.
bounds = np.array(ren.compute_visible_prop_bounds())
if distance is not None and not distance == 'auto':
r = distance
else:
r = max(bounds[1::2] - bounds[::2])*2.0
cen = (bounds[1::2] + bounds[::2])*0.5
if focalpoint is not None and not focalpoint == 'auto':
cen = np.asarray(focalpoint)
# Find camera position.
x = r*cos(phi)*sin(theta)
y = r*sin(phi)*sin(theta)
z = r*cos(theta)
# Now setup the view.
cam.focal_point = cen
cam.position = cen + [x,y,z]
cam.compute_view_plane_normal()
ren.reset_camera_clipping_range()
if reset_roll:
# Now calculate the view_up vector of the camera. If the view up is
# close to the 'z' axis, the view plane normal is parallel to the
# camera which is unacceptable, so we use a different view up.
view_up = [0, 0, 1]
if abs(elevation) < 5. or abs(elevation) > 175.:
view_up = [sin(phi), cos(phi), 0]
cam.view_up = view_up
if distance == 'auto':
# Reset the zoom, to have the full extents:
scene.reset_zoom()
x_min, x_max, y_min, y_max, w, h = get_outline_bounds(figure=figure)
x_focus, y_focus = world_to_display(cen[0], cen[1], cen[2],
figure=figure)
ratio = 1.1*max((x_focus - x_min)/x_focus,
(x_max - x_focus)/(w - x_focus),
(y_focus - y_min)/y_focus,
(y_max - y_focus)/(h - y_focus),
)
distance = get_camera_direction(cam)[0]
r = distance*ratio
# Reset the camera position.
x = r*cos(phi)*sin(theta)
y = r*sin(phi)*sin(theta)
z = r*cos(theta)
# Now setup the view.
cam.position = cen + [x,y,z]
cam.compute_view_plane_normal()
ren.reset_camera_clipping_range()
if not scene.disable_render:
scene.render()
return rad2deg(phi), rad2deg(theta), r, fp
def move(forward=None, right=None, up=None):
""" Translates the camera and focal point together.
The arguments specify the relative distance to translate the
camera and focal point, so as to produce the appearence of
moving the camera without changing the effective field of view.
If called with no arguments, the function returns the absolute
position of the camera and focal pointon a cartesian coordinate
system.
Note that the arguments specify relative motion, although the
return value with no arguments is in an absolute coordinate system.
**Keyword arguments**:
:forward: float, optional. The distance in space to translate the
camera forward (if positive) or backward (if negative)
:right: float, optional. The distance in space to translate the
camera to the right (if positive) or left (if negative)
:up: float, optional. The distance in space to translate the
camera up (if positive) or down (if negative)
**Returns**:
If no arguments are supplied (or all are None), returns a
tuple (camera_position, focal_point_position)
otherwise, returns None
**Examples**:
Get the current camera position::
>>> cam,foc = move()
>>> cam
array([-0.06317079, -0.52849738, -1.68316389])
>>> foc
array([ 1.25909623, 0.15692708, -0.37576693])
Translate the camera::
>>> move(3,-1,-1.2)
>>> move()
(array([ 2.93682921, -1.52849738, -2.88316389]),
array([ 4.25909623, -0.84307292, -1.57576693]))
Return to the starting position::
>>> move(-3,1,1.2)
>>> move()
(array([-0.06317079, -0.52849738, -1.68316389]),
array([ 1.25909623, 0.15692708, -0.37576693]))
**See also**
:mlab.yaw: yaw the camera (tilt left-right)
:mlab.pitch: pitch the camera (tilt up-down)
:mlab.roll: control the absolute roll angle of the camera
:mlab.view: set the camera position relative to the focal point instead
of in absolute space
"""
f = get_engine().current_scene
if f is None:
return
scene = f.scene
if scene is None:
return
ren = scene.renderer
cam = scene.camera
if forward is None and right is None and up is None:
return cam.position,cam.focal_point
# vector to offset the camera loc and focal point
v = np.zeros(3)
# view plane vetor points behind viewing direction, so we invert it
yhat = -1*cam.view_plane_normal
zhat = cam.view_up
if forward is not None:
xhat = np.cross(yhat,zhat)
v += forward*yhat
if right is not None:
v += right*xhat
if up is not None:
v += up*zhat
# Apply the offset and setup the view.
cam.position = cam.position + v
cam.focal_point = cam.focal_point + v
ren.reset_camera_clipping_range()
scene.render()
def yaw(degrees):
""" Rotates the camera about the axis corresponding to the
"up" direction of the current view. Note that this will
change the location of the focal point (although not the
camera location).
This angle is relative to the current direction - the
angle is NOT an absolute angle in a fixed coordinate
system.
**See also**
:mlab.pitch: relative rotation about the "right" direction
:mlab.roll: absolute roll angle (i.e. "up" direction)
:mlab.move: relative translation of the camera and focal
point
"""
f = get_engine().current_scene
if f is None:
return
scene = f.scene
if scene is None:
return
ren = scene.renderer
cam = scene.camera
cam.yaw(degrees)
ren.reset_camera_clipping_range()
scene.render()
def pitch(degrees):
""" Rotates the camera about the axis corresponding to the
"right" direction of the current view. Note that this will
change the location of the focal point (although not the
camera location).
This angle is relative to the current direction - the
angle is NOT an absolute angle in a fixed coordinate
system.
**See also**
:mlab.yaw: relative rotation about the "up" direction
:mlab.roll: absolute roll angle (i.e. "up" direction)
:mlab.move: relative translation of the camera and focal
point
"""
f = get_engine().current_scene
if f is None:
return
scene = f.scene
if scene is None:
return
ren = scene.renderer
cam = scene.camera
cam.pitch(degrees)
ren.reset_camera_clipping_range()
scene.render()
|