This file is indexed.

/usr/share/pyshared/mayavi/tools/sources.py is in mayavi2 4.0.0-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
"""
Data sources classes and their associated functions for mlab.
"""

# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
#         Prabhu Ramachandran
# Copyright (c) 2007-2010, Enthought, Inc.
# License: BSD Style.

import operator

import numpy as np

from traits.api import (HasTraits, Instance, CArray, Either,
            Bool, on_trait_change, NO_COMPARE)
from tvtk.api import tvtk
from tvtk.common import camel2enthought

from mayavi.sources.array_source import ArraySource
from mayavi.core.registry import registry

import tools
from engine_manager import engine_manager

__all__ = [ 'vector_scatter', 'vector_field', 'scalar_scatter',
    'scalar_field', 'line_source', 'array2d_source', 'grid_source',
    'open', 'triangular_mesh_source', 'vertical_vectors_source',
]

################################################################################
# A subclass of CArray that will accept floats and do a np.atleast_1d
################################################################################
class CArrayOrNumber(CArray):

    def validate( self, object, name, value):
        if operator.isNumberType(value):
            value = np.atleast_1d(value)
        return CArray.validate(self, object, name, value)


################################################################################
# `MlabSource` class.
################################################################################
class MlabSource(HasTraits):
    """
    This class represents the base class for all mlab sources.  These
    classes allow a user to easily update the data without having to
    recreate the whole pipeline.
    """

    # The TVTK dataset we manage.
    dataset = Instance(tvtk.DataSet)

    # The Mayavi data source we manage.
    m_data = Instance(HasTraits)

    ########################################
    # Private traits.

    # Disable the update when data is changed.
    _disable_update = Bool(False)

    ######################################################################
    # `MlabSource` interface.
    ######################################################################
    def reset(self, **traits):
        """Function to create the data from input arrays etc.

        This is to be used when the size of the arrays change or the
        first time when the data is created.  This regenerates the data
        structures and will be slower in general.
        """
        raise NotImplementedError()

    def update(self):
        """Update the visualization.

        This is to be called after the data of the visualization has
        changed.
        """
        if not self._disable_update:
            self.dataset.modified()
            md = self.m_data
            if md is not None:
                if hasattr(md, '_assign_attribute'):
                    md._assign_attribute.update()
                md.data_changed = True

    def set(self, trait_change_notify=True, **traits):
        """Shortcut for setting object trait attributes.

        This is an overridden method that will make changing multiple
        traits easier.  This method is to be called when the arrays have
        changed content but not in shape/size.  In that case one must
        call the `reset` method.

        Parameters
        ----------
        trait_change_notify : Boolean
            If **True** (the default), then each value assigned may generate a
            trait change notification. If **False**, then no trait change
            notifications will be generated. (see also: trait_setq)
        traits : list of key/value pairs
            Trait attributes and their values to be set

        Returns
        -------
        self
            The method returns this object, after setting attributes.
        """
        try:
            self._disable_update = True
            super(MlabSource, self).set(trait_change_notify, **traits)
        finally:
            self._disable_update = False
        if trait_change_notify:
            self.update()
        return self

    ######################################################################
    # Non-public interface.
    ######################################################################
    def _m_data_changed(self, ds):
        if not hasattr(ds, 'mlab_source'):
            ds.add_trait('mlab_source', Instance(MlabSource))
        ds.mlab_source = self


ArrayOrNone = Either(None, CArray, comparison_mode=NO_COMPARE)
ArrayNumberOrNone = Either(None, CArrayOrNumber, comparison_mode=NO_COMPARE)


################################################################################
# `MGlyphSource` class.
################################################################################
class MGlyphSource(MlabSource):
    """
    This class represents a glyph data source for Mlab objects and
    allows the user to set the x, y, z, scalar/vector attributes.
    """

    # The x, y, z and points of the glyphs.
    x       = ArrayNumberOrNone
    y       = ArrayNumberOrNone
    z       = ArrayNumberOrNone
    points  = ArrayOrNone

    # The scalars shown on the glyphs.
    scalars = ArrayNumberOrNone

    # The u, v, w components of the vector and the vectors.
    u = ArrayNumberOrNone
    v = ArrayNumberOrNone
    w = ArrayNumberOrNone
    vectors = ArrayOrNone

    ######################################################################
    # `MlabSource` interface.
    ######################################################################
    def reset(self, **traits):
        """Creates the dataset afresh or resets existing data source."""
        # First convert numbers to arrays.
        for name in ('x', 'y', 'z', 'u', 'v', 'w', 'scalars'):
            if name in traits and traits[name] is not None:
                traits[name] = np.atleast_1d(traits[name])

        # First set the attributes without really doing anything since
        # the notification handlers are not called.
        self.set(trait_change_notify=False, **traits)

        vectors = self.vectors
        scalars = self.scalars
        points = self.points
        x, y, z = self.x, self.y, self.z
        x = np.atleast_1d(x)
        y = np.atleast_1d(y)
        z = np.atleast_1d(z)

        if 'points' in traits:
            x=points[:,0].ravel()
            y=points[:,1].ravel()
            z=points[:,2].ravel()
            self.set(x=x,y=y,z=z,trait_change_notify=False)

        else:
            points = np.c_[x.ravel(), y.ravel(), z.ravel()].ravel()
            points.shape = (points.size/3, 3)
            self.set(points=points, trait_change_notify=False)


        u, v, w = self.u, self.v, self.w
        if u is not None:
            u = np.atleast_1d(u)
            v = np.atleast_1d(v)
            w = np.atleast_1d(w)
            if len(u) > 0:
                vectors = np.c_[u.ravel(), v.ravel(),
                                w.ravel()].ravel()
                vectors.shape = (vectors.size/3, 3)
                self.set(vectors=vectors, trait_change_notify=False)

        if 'vectors' in traits:
            u=vectors[:,0].ravel()
            v=vectors[:,1].ravel()
            w=vectors[:,2].ravel()
            self.set(u=u,v=v,w=w,trait_change_notify=False)

        else:
            if u is not None and len(u) > 0:
                vectors = np.c_[u.ravel(), v.ravel(),
                                   w.ravel()].ravel()
                vectors.shape = (vectors.size/3, 3)
                self.set(vectors=vectors, trait_change_notify=False)


        if vectors is not None and len(vectors) > 0:
            assert len(points) == len(vectors)
        if scalars is not None:
            scalars = np.atleast_1d(scalars)
            if len(scalars) > 0:
                assert len(points) == len(scalars)

        # Create the dataset.
        polys = np.arange(0, len(points), 1, 'l')
        polys = np.reshape(polys, (len(points), 1))
        if self.dataset is None:
            # Create new dataset if none exists
            pd = tvtk.PolyData()
        else:
            # Modify existing one.
            pd = self.dataset
        pd.set(points=points, polys=polys)

        if self.vectors is not None:
            pd.point_data.vectors = self.vectors
            pd.point_data.vectors.name = 'vectors'
        if self.scalars is not None:
            pd.point_data.scalars = self.scalars
            pd.point_data.scalars.name = 'scalars'

        self.dataset = pd

    ######################################################################
    # Non-public interface.
    ######################################################################
    def _x_changed(self, x):
        x = np.atleast_1d(x)
        self.points[:,0] = x
        self.update()

    def _y_changed(self, y):
        y = np.atleast_1d(y)
        self.points[:,1] = y
        self.update()

    def _z_changed(self, z):
        z = np.atleast_1d(z)
        self.points[:,2] = z
        self.update()

    def _u_changed(self, u):
        u = np.atleast_1d(u)
        self.vectors[:,0] = u
        self.update()

    def _v_changed(self, v):
        v = np.atleast_1d(v)
        self.vectors[:,1] = v
        self.update()

    def _w_changed(self, w):
        w = np.atleast_1d(w)
        self.vectors[:,2] = w
        self.update()

    def _points_changed(self, p):
        p = np.atleast_2d(p)
        self.dataset.points = p
        self.update()

    def _scalars_changed(self, s):
        if s is None:
            self.dataset.point_data.scalars = None
            self.dataset.point_data.remove_array('scalars')
        else:
            s = np.atleast_1d(s)
            self.dataset.point_data.scalars = s
            self.dataset.point_data.scalars.name = 'scalars'
        self.update()

    def _vectors_changed(self, v):
        self.dataset.point_data.vectors = v
        self.dataset.point_data.vectors.name = 'vectors'
        self.update()


################################################################################
# `MVerticalGlyphSource` class.
################################################################################
class MVerticalGlyphSource(MGlyphSource):
    """
    This class represents a vertical glyph data source for Mlab objects
    and allows the user to set the x, y, z, scalar attributes. The
    vectors are created from the scalars to represent them in the
    vertical direction.
    """

    def reset(self, **traits):
        """Creates the dataset afresh or resets existing data source."""
        if 'scalars' in traits:
            s = traits['scalars']
            if s is not None:
                traits['u'] = traits['v'] = np.ones_like(s),
                traits['w'] = s
        super(MVerticalGlyphSource, self).reset(**traits)


    def _scalars_changed(self, s):
        self.dataset.point_data.scalars = s
        self.dataset.point_data.scalars.name = 'scalars'
        self.set(vectors=np.c_[np.ones_like(s),
                                  np.ones_like(s),
                                  s])
        self.update()


################################################################################
# `MArraySource` class.
################################################################################
class MArraySource(MlabSource):
    """
    This class represents an array data source for Mlab objects and
    allows the user to set the x, y, z, scalar/vector attributes.
    """

    # The x, y, z arrays for the volume.
    x = ArrayOrNone
    y = ArrayOrNone
    z = ArrayOrNone

    # The scalars shown on the glyphs.
    scalars = ArrayOrNone

    # The u, v, w components of the vector and the vectors.
    u = ArrayOrNone
    v = ArrayOrNone
    w = ArrayOrNone
    vectors = ArrayOrNone

    ######################################################################
    # `MlabSource` interface.
    ######################################################################
    def reset(self, **traits):
        """Creates the dataset afresh or resets existing data source."""

        # First set the attributes without really doing anything since
        # the notification handlers are not called.
        self.set(trait_change_notify=False, **traits)

        vectors = self.vectors
        scalars = self.scalars
        x, y, z = [np.atleast_3d(a) for a in self.x, self.y, self.z]

        u, v, w = self.u, self.v, self.w
        if 'vectors' in traits:
            u=vectors[:,0].ravel()
            v=vectors[:,1].ravel()
            w=vectors[:,2].ravel()
            self.set(u=u,v=v,w=w,trait_change_notify=False)

        else:
            if u is not None and len(u) > 0:
                #vectors = np.concatenate([u[..., np.newaxis],
                #                             v[..., np.newaxis],
                #                             w[..., np.newaxis] ],
                #                axis=3)
                vectors = np.c_[u.ravel(), v.ravel(),
                                   w.ravel()].ravel()
                vectors.shape = (u.shape[0] , u.shape[1], w.shape[2], 3)
                self.set(vectors=vectors, trait_change_notify=False)

        if vectors is not None and len(vectors) > 0 and scalars is not None:
            assert len(scalars) == len(vectors)

        if x.shape[0] <= 1:
            dx = 1
        else:
            dx = x[1, 0, 0] - x[0, 0, 0]
        if y.shape[1] <= 1:
            dy = 1
        else:
            dy = y[0, 1, 0] - y[0, 0, 0]
        if z.shape[2] <= 1:
            dz = 1
        else:
            dz = z[0, 0, 1] - z[0, 0, 0]

        if self.m_data is None:
            ds = ArraySource(transpose_input_array=True)
        else:
            ds = self.m_data
        old_scalar = ds.scalar_data
        ds.set(vector_data=vectors,
               origin=[x.min(), y.min(), z.min()],
               spacing=[dx, dy, dz],
               scalar_data=scalars)
        if scalars is old_scalar:
            ds._scalar_data_changed(scalars)

        self.dataset = ds.image_data
        self.m_data = ds

    ######################################################################
    # Non-public interface.
    ######################################################################
    @on_trait_change('[x, y, z]')
    def _xyz_changed(self):
        x, y, z = self.x, self.y, self.z
        dx = x[1, 0, 0] - x[0, 0, 0]
        dy = y[0, 1, 0] - y[0, 0, 0]
        dz = z[0, 0, 1] - z[0, 0, 0]
        ds = self.dataset
        ds.origin = [x.min(), y.min(), z.min()]
        ds.spacing = [dx, dy, dz]
        if self.m_data is not None:
            self.m_data.set(origin=ds.origin, spacing=ds.spacing)
        self.update()

    def _u_changed(self, u):
        self.vectors[...,0] = u
        self.m_data._vector_data_changed(self.vectors)

    def _v_changed(self, v):
        self.vectors[...,1] = v
        self.m_data._vector_data_changed(self.vectors)

    def _w_changed(self, w):
        self.vectors[...,2] = w
        self.m_data._vector_data_changed(self.vectors)

    def _scalars_changed(self, s):
        old = self.m_data.scalar_data
        self.m_data.scalar_data = s
        if old is s:
            self.m_data._scalar_data_changed(s)

    def _vectors_changed(self, v):
        self.m_data.vector_data = v


################################################################################
# `MLineSource` class.
################################################################################
class MLineSource(MlabSource):
    """
    This class represents a line data source for Mlab objects and
    allows the user to set the x, y, z, scalar attributes.
    """

    # The x, y, z and points of the glyphs.
    x = ArrayOrNone
    y = ArrayOrNone
    z = ArrayOrNone
    points = ArrayOrNone

    # The scalars shown on the glyphs.
    scalars = ArrayOrNone

    ######################################################################
    # `MlabSource` interface.
    ######################################################################
    def reset(self, **traits):
        """Creates the dataset afresh or resets existing data source."""

        # First set the attributes without really doing anything since
        # the notification handlers are not called.
        self.set(trait_change_notify=False, **traits)

        points = self.points
        scalars = self.scalars
        x, y, z = self.x, self.y, self.z

        if 'points' in traits:
            x=points[:,0].ravel()
            y=points[:,1].ravel()
            z=points[:,2].ravel()
            self.set(x=x,y=y,z=z,trait_change_notify=False)

        else:
            points = np.c_[x.ravel(), y.ravel(), z.ravel()].ravel()
            points.shape = (len(x), 3)
            self.set(points=points, trait_change_notify=False)


        # Create the dataset.
        n_pts = len(points) - 1
        lines  = np.zeros((n_pts, 2), 'l')
        lines[:,0] = np.arange(0, n_pts-0.5, 1, 'l')
        lines[:,1] = np.arange(1, n_pts+0.5, 1, 'l')
        if self.dataset is None:
            pd = tvtk.PolyData()
        else:
            pd = self.dataset
        # Avoid lines refering to non existing points: First set the
        # lines to None, then set the points, then set the lines
        # refering to the new points.
        pd.set(lines=None)
        pd.set(points=points)
        pd.set(lines=lines)

        if scalars is not None and len(scalars) > 0:
            assert len(x) == len(scalars)
            pd.point_data.scalars = np.ravel(scalars)
            pd.point_data.scalars.name = 'scalars'

        self.dataset = pd

    ######################################################################
    # Non-public interface.
    ######################################################################
    def _x_changed(self, x):
        self.points[:,0] = x
        self.update()

    def _y_changed(self, y):
        self.points[:,1] = y
        self.update()

    def _z_changed(self, z):
        self.points[:,2] = z
        self.update()

    def _points_changed(self, p):
        self.dataset.points = p
        self.update()

    def _scalars_changed(self, s):
        self.dataset.point_data.scalars = s.ravel()
        self.dataset.point_data.scalars.name = 'scalars'
        self.update()

################################################################################
# `MArray2DSource` class.
################################################################################
class MArray2DSource(MlabSource):
    """
    This class represents a 2D array data source for Mlab objects and
    allows the user to set the x, y  and scalar attributes.
    """

    # The x, y values.
    # Values of X and Y as None are accepted, in that case we would build
    # values of X and Y automatically from the shape of scalars
    x = ArrayOrNone
    y = ArrayOrNone

    # The scalars shown on the glyphs.
    scalars = ArrayOrNone

    # The masking array.
    mask = ArrayOrNone

    ######################################################################
    # `MlabSource` interface.
    ######################################################################
    def reset(self, **traits):
        """Creates the dataset afresh or resets existing data source."""

        # First set the attributes without really doing anything since
        # the notification handlers are not called.
        self.set(trait_change_notify=False, **traits)
        x, y, mask = self.x, self.y, self.mask
        scalars = self.scalars

        # We may have used this without specifying x and y at all in
        # which case we set them from the shape of scalars.
        nx, ny = scalars.shape

        #Build X and Y from shape of Scalars if they are none
        if x is None and y is None:
            x, y = np.mgrid[-nx/2.:nx/2, -ny/2.:ny/2]

        if mask is not None and len(mask) > 0:
            scalars[mask.astype('bool')] = np.nan
            # The NaN trick only works with floats.
            scalars = scalars.astype('float')
            self.set(scalars=scalars, trait_change_notify=False)

        z = np.array([0])

        self.set(x=x, y=y, z=z, trait_change_notify=False)
        # Do some magic to extract the first row/column, independently of
        # the shape of x and y

        x = np.atleast_2d(x.squeeze().T)[0, :].squeeze()
        y = np.atleast_2d(y.squeeze())[0, :].squeeze()

        if x.ndim == 0:
            dx = 1
        else:
            dx = x[1] - x[0]
        if y.ndim == 0:
            dy = 1
        else:
            dy = y[1] - y[0]
        if self.m_data is None:
            ds = ArraySource(transpose_input_array=True)
        else:
            ds = self.m_data
        old_scalar = ds.scalar_data
        ds.set(origin=[x.min(), y.min(), 0],
               spacing=[dx, dy, 1],
               scalar_data=scalars)
        if old_scalar is scalars:
            ds._scalar_data_changed(scalars)

        self.dataset = ds.image_data
        self.m_data = ds

    ######################################################################
    # Non-public interface.
    ######################################################################
    @on_trait_change('[x, y]')
    def _xy_changed(self):
        x, y,scalars = self.x, self.y, self.scalars

        nx, ny = scalars.shape

        if x is None or y is None:
            x, y = np.mgrid[-nx/2.:nx/2, -ny/2.:ny/2]

        self.trait_setq(x=x,y=y)
        x = np.atleast_2d(x.squeeze().T)[0, :].squeeze()
        y = np.atleast_2d(y.squeeze())[0, :].squeeze()
        dx = x[1] - x[0]
        dy = y[1] - y[0]
        ds = self.dataset
        ds.origin = [x.min(), y.min(), 0]
        ds.spacing = [dx, dy, 1]
        if self.m_data is not None:
            self.m_data.set(origin=ds.origin, spacing=ds.spacing)
        self.update()

    def _scalars_changed(self, s):
        mask = self.mask
        if mask is not None and len(mask) > 0:
            s[mask.astype('bool')] = np.nan
            # The NaN tric only works with floats.
            s = s.astype('float')
            self.set(scalars=s, trait_change_notify=False)
        old = self.m_data.scalar_data
        self.m_data.scalar_data = s
        if s is old:
            self.m_data._scalar_data_changed(s)


################################################################################
# `MGridSource` class.
################################################################################
class MGridSource(MlabSource):
    """
    This class represents a grid source for Mlab objects and
    allows the user to set the x, y, scalar attributes.
    """

    # The x, y, z and points of the grid.
    x = ArrayOrNone
    y = ArrayOrNone
    z = ArrayOrNone
    points = ArrayOrNone

    # The scalars shown on the glyphs.
    scalars = ArrayOrNone

    ######################################################################
    # `MlabSource` interface.
    ######################################################################
    def reset(self, **traits):
        """Creates the dataset afresh or resets existing data source."""

        # First set the attributes without really doing anything since
        # the notification handlers are not called.
        self.set(trait_change_notify=False, **traits)

        points = self.points
        scalars = self.scalars
        x, y, z = self.x, self.y, self.z

        assert len(x.shape) == 2, "Array x must be 2 dimensional."
        assert len(y.shape) == 2, "Array y must be 2 dimensional."
        assert len(z.shape) == 2, "Array z must be 2 dimensional."
        assert x.shape == y.shape, "Arrays x and y must have same shape."
        assert y.shape == z.shape, "Arrays y and z must have same shape."
        #Points in the grid source will always be created using x,y,z
        #Changing of points is not allowed because it cannot be used to modify values of x,y,z

        nx, ny = x.shape
        points = np.c_[x.ravel(), y.ravel(), z.ravel()].ravel()
        points.shape = (nx*ny, 3)
        self.set(points=points, trait_change_notify=False)

        i, j = np.mgrid[0:nx-1,0:ny-1]
        i, j = np.ravel(i), np.ravel(j)
        t1 = i*ny+j, (i+1)*ny+j, (i+1)*ny+(j+1)
        t2 = (i+1)*ny+(j+1), i*ny+(j+1), i*ny+j
        nt = len(t1[0])
        triangles = np.zeros((nt*2, 3), 'l')
        triangles[0:nt,0], triangles[0:nt,1], triangles[0:nt,2] = t1
        triangles[nt:,0], triangles[nt:,1], triangles[nt:,2] = t2

        if self.dataset is None:
            pd = tvtk.PolyData()
        else:
            pd = self.dataset
        pd.set(points=points, polys=triangles)

        if scalars is not None and len(scalars) > 0:
            if not scalars.flags.contiguous:
                scalars = scalars.copy()
                self.set(scalars=scalars, trait_change_notify=False)
            assert x.shape == scalars.shape
            pd.point_data.scalars = scalars.ravel()
            pd.point_data.scalars.name = 'scalars'

        self.dataset = pd

    ######################################################################
    # Non-public interface.
    ######################################################################
    def _x_changed(self, x):
        self.trait_setq(x=x);
        self.points[:,0] = x.ravel()
        self.update()

    def _y_changed(self, y):
        self.trait_setq(y=y)
        self.points[:,1] = y.ravel()
        self.update()

    def _z_changed(self, z):
        self.trait_setq(z=z)
        self.points[:,2] = z.ravel()
        self.update()

    def _points_changed(self, p):
        self.dataset.points = p
        self.update()

    def _scalars_changed(self, s):
        self.dataset.point_data.scalars = s.ravel()
        self.dataset.point_data.scalars.name = 'scalars'
        self.update()


################################################################################
# `MTriangularMeshSource` class.
################################################################################
class MTriangularMeshSource(MlabSource):
    """
    This class represents a triangular mesh source for Mlab objects and
    allows the user to set the x, y, scalar attributes.
    """

    # The x, y, z and points of the grid.
    x = ArrayOrNone
    y = ArrayOrNone
    z = ArrayOrNone
    points = ArrayOrNone
    triangles = ArrayOrNone

    # The scalars shown on the glyphs.
    scalars = ArrayOrNone

    ######################################################################
    # `MlabSource` interface.
    ######################################################################
    def reset(self, **traits):
        """Creates the dataset afresh or resets existing data source."""

        # First set the attributes without really doing anything since
        # the notification handlers are not called.
        self.set(trait_change_notify=False, **traits)

        points = self.points
        scalars = self.scalars

        x, y, z = self.x, self.y, self.z
        points = np.c_[x.ravel(), y.ravel(), z.ravel()].ravel()
        points.shape = (points.size/3, 3)
        self.set(points=points, trait_change_notify=False)

        triangles = self.triangles
        assert triangles.shape[1] == 3, \
            "The shape of the triangles array must be (X, 3)"
        assert triangles.max() < len(points), \
            "The triangles indices must be smaller that the number of points"
        assert triangles.min() >= 0, \
            "The triangles indices must be positive or null"

        if self.dataset is None:
            pd = tvtk.PolyData()
        else:
            pd = self.dataset
        # Set the points first, and the triangles after: so that the
        # polygone can refer to the right points, in the polydata.
        pd.set(points=points)
        pd.set(polys=triangles)

        if (not 'scalars' in traits
                    and scalars is not None
                    and scalars.shape != x.shape):
            # The scalars where set probably automatically to z, by the
            # factory. We need to reset them, as the size has changed.
            scalars = z

        if scalars is not None and len(scalars) > 0:
            if not scalars.flags.contiguous:
                scalars = scalars.copy()
                self.set(scalars=scalars, trait_change_notify=False)
            assert x.shape == scalars.shape
            pd.point_data.scalars = scalars.ravel()
            pd.point_data.scalars.name = 'scalars'

        self.dataset = pd

    ######################################################################
    # Non-public interface.
    ######################################################################
    def _x_changed(self, x):
        self.trait_setq(x=x);
        self.points[:,0] = x.ravel()
        self.update()

    def _y_changed(self, y):
        self.trait_setq(y=y)
        self.points[:,1] = y.ravel()
        self.update()

    def _z_changed(self, z):
        self.trait_setq(z=z)
        self.points[:,2] = z.ravel()
        self.update()

    def _points_changed(self, p):
        self.dataset.points = p
        self.update()

    def _scalars_changed(self, s):
        self.dataset.point_data.scalars = s.ravel()
        self.dataset.point_data.scalars.name = 'scalars'
        self.update()

    def _triangles_changed(self, triangles):
        if triangles.min() < 0:
            raise ValueError, 'The triangles array has negative values'
        if triangles.max() > self.x.size:
            raise ValueError, 'The triangles array has values larger than' \
                                        'the number of points'
        self.dataset.polys = triangles
        self.update()


############################################################################
# Argument processing
############################################################################

def convert_to_arrays(args):
    """ Converts a list of iterables to a list of arrays or callables,
        if needed.
    """
    args = list(args)
    for index, arg in enumerate(args):
        if not callable(arg):
            if not hasattr(arg, 'shape'):
                arg = np.atleast_1d(np.array(arg))
            if np.any(np.isinf(arg)):
                raise ValueError("""Input array contains infinite values
                You can remove them using: a[np.isinf(a)] = np.nan
                """)
            args[index] = arg
    return args

def process_regular_vectors(*args):
    """ Converts different signatures to (x, y, z, u, v, w). """
    args = convert_to_arrays(args)
    if len(args)==3:
        u, v, w = [np.atleast_3d(a) for a in args]
        assert len(u.shape)==3, "3D array required"
        x, y, z = np.indices(u.shape)
    elif len(args)==6:
        x, y, z, u, v, w = args
    elif len(args)==4:
        x, y, z, f = args
        if not callable(f):
            raise ValueError, "When 4 arguments are provided, the fourth must be a callable"
        u, v, w = f(x, y, z)
    else:
        raise ValueError, "wrong number of arguments"

    assert ( x.shape == y.shape and
            y.shape == z.shape and
            u.shape == z.shape and
            v.shape == u.shape and
            w.shape == v.shape ), "argument shape are not equal"

    return x, y, z, u, v, w

def process_regular_scalars(*args):
    """ Converts different signatures to (x, y, z, s). """
    args = convert_to_arrays(args)
    if len(args)==1:
        s = np.atleast_3d(args[0])
        assert len(s.shape)==3, "3D array required"
        x, y, z = np.indices(s.shape)
    elif len(args)==3:
        x, y, z = args
        s = None
    elif len(args)==4:
        x, y, z, s = args
        if callable(s):
            s = s(x, y, z)
    else:
        raise ValueError, "wrong number of arguments"

    assert ( x.shape == y.shape and
            y.shape == z.shape and
            ( s is None
                or s.shape == z.shape ) ), "argument shape are not equal"

    return x, y, z, s

def process_regular_2d_scalars(*args, **kwargs):
    """ Converts different signatures to (x, y, s). """
    args = convert_to_arrays(args)
    for index, arg in enumerate(args):
        if not callable(arg):
            args[index] = np.atleast_2d(arg)
    if len(args)==1:
        s = args[0]
        assert len(s.shape)==2, "2D array required"
        x, y = np.indices(s.shape)
    elif len(args)==3:
        x, y, s = args
        if callable(s):
            s = s(x, y)
    else:
        raise ValueError, "wrong number of arguments"
    assert len(s.shape)==2, "2D array required"

    if 'mask' in kwargs:
        mask = kwargs['mask']
        s[mask.astype('bool')] = np.nan
        # The NaN tric only works with floats.
        s = s.astype('float')

    return x, y, s


############################################################################
# Sources
############################################################################

def vector_scatter(*args, **kwargs):
    """ Creates scattered vector data.

    **Function signatures**::

        vector_scatter(u, v, w, ...)
        vector_scatter(x, y, z, u, v, w, ...)
        vector_scatter(x, y, z, f, ...)

    If only 3 arrays u, v, w are passed the x, y and z arrays are assumed to be
    made from the indices of vectors.

    If 4 positional arguments are passed the last one must be a callable, f,
    that returns vectors.

    **Keyword arguments**:

        :name: the name of the vtk object created.

        :scalars: optional scalar data.

        :figure: optionally, the figure on which to add the data source.
                 If None, the source is not added to any figure, and will
                 be added automatically by the modules or
                 filters. If False, no figure will be created by modules
                 or filters applied to the source: the source can only
                 be used for testing, or numerical algorithms, not
                 visualization."""
    x, y, z, u, v, w = process_regular_vectors(*args)

    scalars = kwargs.pop('scalars', None)
    if scalars is not None:
        scalars = np.ravel(scalars)
    name = kwargs.pop('name', 'VectorScatter')

    data_source = MGlyphSource()
    data_source.reset(x=x, y=y, z=z, u=u, v=v, w=w, scalars=scalars)

    ds = tools.add_dataset(data_source.dataset, name, **kwargs)
    data_source.m_data = ds
    return ds


def vector_field(*args, **kwargs):
    """ Creates vector field data.

    **Function signatures**::

        vector_field(u, v, w, ...)
        vector_field(x, y, z, u, v, w, ...)
        vector_field(x, y, z, f, ...)

    If only 3 arrays u, v, w are passed the x, y and z arrays are assumed to be
    made from the indices of vectors.

    If the x, y and z arrays are passed, they should have been generated
    by `numpy.mgrid` or `numpy.ogrid`. The function builds a scalar field
    assuming the points are regularily spaced on an orthogonal grid.

    If 4 positional arguments are passed the last one must be a callable, f,
    that returns vectors.

    **Keyword arguments**:

        :name: the name of the vtk object created.

        :scalars: optional scalar data.

        :figure: optionally, the figure on which to add the data source.
                 If None, the source is not added to any figure, and will
                 be added automatically by the modules or
                 filters. If False, no figure will be created by modules
                 or filters applied to the source: the source can only
                 be used for testing, or numerical algorithms, not
                 visualization."""
    if len(args) == 3:
        x = y = z = np.atleast_3d(1)
        u, v, w = [np.atleast_3d(a) for a in args]
    else:
        x, y, z, u, v, w = [np.atleast_3d(a)
                        for a in process_regular_vectors(*args)]

    scalars = kwargs.pop('scalars', None)
    if scalars is not None:
        scalars = np.atleast_3d(scalars)
    data_source = MArraySource()
    data_source.reset(x=x, y=y, z=z, u=u, v=v, w=w, scalars=scalars)
    name = kwargs.pop('name', 'VectorField')
    return tools.add_dataset(data_source.m_data, name, **kwargs)


def scalar_scatter(*args, **kwargs):
    """
    Creates scattered scalar data.

    **Function signatures**::

        scalar_scatter(s, ...)
        scalar_scatter(x, y, z, s, ...)
        scalar_scatter(x, y, z, s, ...)
        scalar_scatter(x, y, z, f, ...)

    If only 1 array s is passed the x, y and z arrays are assumed to be
    made from the indices of vectors.

    If 4 positional arguments are passed the last one must be an array s, or
    a callable, f, that returns an array.

    **Keyword arguments**:

        :name: the name of the vtk object created.

        :figure: optionally, the figure on which to add the data source.
                 If None, the source is not added to any figure, and will
                 be added automatically by the modules or
                 filters. If False, no figure will be created by modules
                 or filters applied to the source: the source can only
                 be used for testing, or numerical algorithms, not
                 visualization."""
    x, y, z, s = process_regular_scalars(*args)

    if s is not None:
        s = np.ravel(s)

    data_source = MGlyphSource()
    data_source.reset(x=x, y=y, z=z, scalars=s)

    name = kwargs.pop('name', 'ScalarScatter')
    ds = tools.add_dataset(data_source.dataset, name, **kwargs)
    data_source.m_data = ds
    return ds


def scalar_field(*args, **kwargs):
    """
    Creates a scalar field data.

    **Function signatures**::

        scalar_field(s, ...)
        scalar_field(x, y, z, s, ...)
        scalar_field(x, y, z, f, ...)

    If only 1 array s is passed the x, y and z arrays are assumed to be
    made from the indices of arrays.

    If the x, y and z arrays are passed they are supposed to have been
    generated by `numpy.mgrid`. The function builds a scalar field assuming
    the points are regularily spaced.

    If 4 positional arguments are passed the last one must be an array s, or
    a callable, f, that returns an array.

    **Keyword arguments**:

        :name: the name of the vtk object created.

        :figure: optionally, the figure on which to add the data source.
                 If None, the source is not added to any figure, and will
                 be added automatically by the modules or
                 filters. If False, no figure will be created by modules
                 or filters applied to the source: the source can only
                 be used for testing, or numerical algorithms, not
                 visualization."""
    if len(args) == 1:
        # Be lazy, don't create three big arrays for 1 input array. The
        # MArraySource is clever-enough to handle flat arrays
        x = y = z = np.atleast_1d(1)
        s = args[0]
    else:
        x, y, z, s = process_regular_scalars(*args)

    data_source = MArraySource()
    data_source.reset(x=x, y=y, z=z, scalars=s)

    name = kwargs.pop('name', 'ScalarField')
    return tools.add_dataset(data_source.m_data, name, **kwargs)


def line_source(*args, **kwargs):
    """
    Creates line data.

    **Function signatures**::

        line_source(x, y, z, ...)
        line_source(x, y, z, s, ...)
        line_source(x, y, z, f, ...)

        If 4 positional arguments are passed the last one must be an array s, or
        a callable, f, that returns an array.

    **Keyword arguments**:

        :name: the name of the vtk object created.

        :figure: optionally, the figure on which to add the data source.
                 If None, the source is not added to any figure, and will
                 be added automatically by the modules or
                 filters. If False, no figure will be created by modules
                 or filters applied to the source: the source can only
                 be used for testing, or numerical algorithms, not
                 visualization."""
    if len(args)==1:
        raise ValueError, "wrong number of arguments"
    x, y, z, s = process_regular_scalars(*args)

    data_source = MLineSource()
    data_source.reset(x=x, y=y, z=z, scalars=s)

    name = kwargs.pop('name', 'LineSource')
    ds = tools.add_dataset(data_source.dataset, name, **kwargs)
    data_source.m_data = ds
    return ds


def array2d_source(*args, **kwargs):
    """
    Creates structured 2D data from a 2D array.

    **Function signatures**::

        array2d_source(s, ...)
        array2d_source(x, y, s, ...)
        array2d_source(x, y, f, ...)

    If 3 positional arguments are passed the last one must be an array s,
    or a callable, f, that returns an array. x and y give the
    coordinnates of positions corresponding to the s values.

    x and y can be 1D or 2D arrays (such as returned by numpy.ogrid or
    numpy.mgrid), but the points should be located on an orthogonal grid
    (possibly non-uniform). In other words, all the points sharing a same
    index in the s array need to have the same x or y value.

    If only 1 array s is passed the x and y arrays are assumed to be
    made from the indices of arrays, and an uniformly-spaced data set is
    created.

    **Keyword arguments**:

        :name: the name of the vtk object created.

        :figure: optionally, the figure on which to add the data source.
                 If None, the source is not added to any figure, and will
                 be added automatically by the modules or
                 filters. If False, no figure will be created by modules
                 or filters applied to the source: the source can only
                 be used for testing, or numerical algorithms, not
                 visualization.

        :mask: Mask points specified in a boolean masking array.
    """
    data_source = MArray2DSource()
    mask = kwargs.pop('mask', None)
    if len(args) == 1 :
        args = convert_to_arrays(args)
        s = np.atleast_2d(args[0])
        data_source.reset(scalars=s, mask=mask)
    else:
        x, y, s = process_regular_2d_scalars(*args, **kwargs)
        data_source.reset(x=x, y=y, scalars=s, mask=mask)

    name = kwargs.pop('name', 'Array2DSource')
    return tools.add_dataset(data_source.m_data, name, **kwargs)


def grid_source(x, y, z, **kwargs):
    """
    Creates 2D grid data.

    x, y, z are 2D arrays giving the positions of the vertices of the surface.
    The connectivity between these points is implied by the connectivity on
    the arrays.

    For simple structures (such as orthogonal grids) prefer the array2dsource
    function, as it will create more efficient data structures.

    **Keyword arguments**:

        :name: the name of the vtk object created.

        :scalars: optional scalar data.

        :figure: optionally, the figure on which to add the data source.
                 If None, the source is not added to any figure, and will
                 be added automatically by the modules or
                 filters. If False, no figure will be created by modules
                 or filters applied to the source: the source can only
                 be used for testing, or numerical algorithms, not
                 visualization.
        """
    scalars = kwargs.pop('scalars', None)
    if scalars is None:
        scalars = z

    x, y, z, scalars = convert_to_arrays((x, y, z, scalars))
    data_source = MGridSource()
    data_source.reset(x=x, y=y, z=z, scalars=scalars)

    name = kwargs.pop('name', 'GridSource')
    ds = tools.add_dataset(data_source.dataset, name, **kwargs)
    data_source.m_data = ds
    return ds


def vertical_vectors_source(*args, **kwargs):
    """
    Creates a set of vectors pointing upward, useful eg for bar graphs.

    **Function signatures**::

        vertical_vectors_source(s, ...)
        vertical_vectors_source(x, y, s, ...)
        vertical_vectors_source(x, y, f, ...)
        vertical_vectors_source(x, y, z, s, ...)
        vertical_vectors_source(x, y, z, f, ...)

    If only one positional argument is passed, it can be a 1D, 2D, or 3D
    array giving the length of the vectors. The positions of the data
    points are deducted from the indices of array, and an
    uniformly-spaced data set is created.

    If 3 positional arguments (x, y, s) are passed the last one must be
    an array s, or a callable, f, that returns an array. x and y give the
    2D coordinates of positions corresponding to the s values. The
    vertical position is assumed to be 0.

    If 4 positional arguments (x, y, z, s) are passed, the 3 first are
    arrays giving the 3D coordinates of the data points, and the last one
    is an array s, or a callable, f, that returns an array giving the
    data value.

    **Keyword arguments**:

        :name: the name of the vtk object created.

        :figure: optionally, the figure on which to add the data source.
                 If None, the source is not added to any figure, and will
                 be added automatically by the modules or
                 filters. If False, no figure will be created by modules
                 or filters applied to the source: the source can only
                 be used for testing, or numerical algorithms, not
                 visualization.
    """
    if len(args) == 3:
        x, y, data = args
        if np.isscalar(x):
            z = 0
        else:
            z = np.zeros_like(x)
        args = (x, y, z, data)

    x, y, z, s = process_regular_scalars(*args)

    if s is not None:
        s = np.ravel(s)

    data_source = MVerticalGlyphSource()
    data_source.reset(x=x, y=y, z=z, scalars=s)

    name = kwargs.pop('name', 'VerticalVectorsSource')
    ds = tools.add_dataset(data_source.dataset, name, **kwargs)
    data_source.m_data = ds
    return ds

def triangular_mesh_source(x, y, z, triangles, **kwargs):
    """
    Creates 2D mesh by specifying points and triangle connectivity.

    x, y, z are 2D arrays giving the positions of the vertices of the surface.
    The connectivity between these points is given by listing triplets of
    vertices inter-connected. These vertices are designed by there
    position index.

    **Keyword arguments**:

        :name: the name of the vtk object created.

        :scalars: optional scalar data.

        :figure: optionally, the figure on which to add the data source.
                 If None, the source is not added to any figure, and will
                 be added automatically by the modules or
                 filters. If False, no figure will be created by modules
                 or filters applied to the source: the source can only
                 be used for testing, or numerical algorithms, not
                 visualization.
        """
    x, y, z, triangles = convert_to_arrays((x, y, z, triangles))

    if triangles.min() < 0:
        raise ValueError, 'The triangles array has negative values'
    if triangles.max() > x.size:
        raise ValueError, 'The triangles array has values larger than' \
                                    'the number of points'
    scalars = kwargs.pop('scalars', None)
    if scalars is None:
        scalars = z

    data_source = MTriangularMeshSource()
    data_source.reset(x=x, y=y, z=z, triangles=triangles, scalars=scalars)

    name = kwargs.pop('name', 'TriangularMeshSource')
    ds = tools.add_dataset(data_source.dataset, name, **kwargs)
    data_source.m_data = ds
    return ds


def open(filename, figure=None):
    """Open a supported data file given a filename.  Returns the source
    object if a suitable reader was found for the file.
    """
    if figure is None:
        engine = tools.get_engine()
    else:
        engine = engine_manager.find_figure_engine(figure)
        engine.current_scene = figure
    src = engine.open(filename)
    return src

############################################################################
# Automatically generated sources from registry.
############################################################################
def _create_data_source(metadata):
    """Creates a data source and adds it to the mayavi engine given
    metadata of the source.  Returns the created source.
    """
    factory = metadata.get_callable()
    src = factory()
    engine = tools.get_engine()
    engine.add_source(src)
    return src

def _make_functions(namespace):
    """Make the automatic functions and add them to the namespace."""
    for src in registry.sources:
        if len(src.extensions) == 0:
            func_name = camel2enthought(src.id)
            if func_name.endswith('_source'):
                func_name = func_name[:-7]
            func = lambda metadata=src: _create_data_source(metadata)
            func.__doc__ = src.help
            func.__name__ = func_name
            # Inject function into the namespace and __all__.
            namespace[func_name] = func
            __all__.append(func_name)

_make_functions(locals())