/usr/share/pyshared/mayavi/tools/tools.py is in mayavi2 4.0.0-3build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 | """
The general purpose tools to manipulate the pipeline with the mlab interface.
"""
# Author: Prabhu Ramachandran <prabhu_r@users.sf.net>,
# Gael Varoquaux <gael dot varoquaux at normalesup dot org>
# Copyright (c) 2007, 2010 Enthought, Inc.
# License: BSD Style.
# Standard library imports.
import numpy
import types
# Enthought library imports.
from tvtk.api import tvtk
# MayaVi related imports.
from mayavi.sources.vtk_data_source import VTKDataSource
from mayavi.core.module_manager import ModuleManager
from mayavi.core.source import Source
from mayavi.core.filter import Filter
from engine_manager import get_engine, engine_manager, get_null_engine
from figure import gcf
######################################################################
# Utility functions.
def add_dataset(dataset, name='', **kwargs):
"""Add a dataset object to the Mayavi pipeline.
**Parameters**
:dataset: a tvtk dataset, or a Mayavi source.
The dataset added to the Mayavi pipeline
:figure: a figure identifier number or string, None or False, optionnal.
If no `figure` keyword argument is given, the data
is added to the current figure (a new figure if created if
necessary).
If a `figure` keyword argument is given, it should either the name
the number of the figure the dataset should be added to, or None,
in which case the data is not added to the pipeline.
If figure is False, a null engine is created. This null
engine does not create figures, and is mainly usefull for
tensting, or using the VTK algorithms without visualization.
**Returns**
The corresponding Mayavi source is returned.
"""
if isinstance(dataset, tvtk.Object):
d = VTKDataSource()
d.data = dataset
elif isinstance(dataset, Source):
d = dataset
else:
raise TypeError, \
"first argument should be either a TVTK object"\
" or a mayavi source"
if len(name) > 0:
d.name = name
if not 'figure' in kwargs:
# No figure has been specified, retrieve the default one.
gcf()
engine = get_engine()
elif kwargs['figure'] is False:
# Get a null engine that we can use.
engine = get_null_engine()
elif kwargs['figure'] is not None:
figure = kwargs['figure']
engine = engine_manager.find_figure_engine(figure)
engine.current_scene = figure
else:
# Return early, as we don't want to add the source to an engine.
return d
engine.add_source(d)
return d
def add_module_manager(object):
""" Add a module-manager, to control colors and legend bars to the
given object.
"""
return get_engine().add_module(ModuleManager(), object)
def _traverse(node):
""" Generator to traverse a tree accessing the nodes' children
attribute.
**Example**
Here is a simple example printing the names of all the objects in
the pipeline::
for obj in mlab.pipeline.traverse(mlab.gcf()):
print obj.name
"""
try:
for leaf in node.children:
for leaflet in _traverse(leaf):
yield leaflet
except AttributeError:
pass
yield node
def get_vtk_src(mayavi_object, stop_at_filter=True):
""" Goes up the Mayavi pipeline to find the data sources of a given
object.
**Parameters**
:object: any Mayavi visualization object
:stop_at_filter: optional boolean flag: if True, the first object
exposing data found going up the pipeline is
returned. If False, only the source itself
is returned.
**Returns**
:sources: List of vtk data sources (vtk data sources, and not
Mayavi source objects).
**Notes**
This function traverses the Mayavi pipeline. Thus the input
object 'mayavi_object' should already be added to the pipeline.
"""
if isinstance(mayavi_object, tvtk.Object) \
and hasattr(mayavi_object, 'point_data'):
# We have been passed a tvtk source
return [mayavi_object]
if not ( hasattr(mayavi_object, 'parent')
or isinstance(mayavi_object, Source)):
raise TypeError, 'Cannot find data source for given object %s' % (
mayavi_object)
while True:
# XXX: If the pipeline is not a DAG, this is an infinite loop
if isinstance(mayavi_object, Source):
if stop_at_filter or not isinstance(mayavi_object, Filter):
return mayavi_object.outputs
mayavi_object = mayavi_object.parent
def _has_scalar_data(object):
"""Tests if an object has scalar data.
"""
data_sources = get_vtk_src(object)
for source in data_sources:
if source.point_data.scalars is not None:
return True
elif source.cell_data.scalars is not None:
return True
return False
def _has_vector_data(object):
"""Tests if an object has vector data.
"""
data_sources = get_vtk_src(object)
for source in data_sources:
if source.point_data.vectors is not None:
return True
elif source.cell_data.vectors is not None:
return True
return False
def _has_tensor_data(object):
"""Tests if an object has tensor data.
"""
data_sources = get_vtk_src(object)
for source in data_sources:
if source.point_data.tensors is not None:
return True
elif source.cell_data.tensors is not None:
return True
return False
def _find_module_manager(object=None, data_type=None):
"""If an object is specified, returns its module_manager, elsewhere finds
the first module_manager in the scene.
"""
if object is None:
for object in _traverse(gcf()):
if isinstance(object, ModuleManager):
if data_type == 'scalar':
if not _has_scalar_data(object):
continue
try:
if not object.actor.mapper.scalar_visibility:
continue
except AttributeError:
pass
if data_type == 'vector' and not _has_vector_data(object):
continue
if data_type == 'tensor' and not _has_tensor_data(object):
continue
return object
else:
if hasattr(object, 'module_manager'):
if ((data_type == 'scalar' and _has_scalar_data(object))
or (data_type == 'vector' and _has_vector_data(object))
or (data_type == 'tensor' and _has_tensor_data(object))
or data_type is None):
return object.module_manager
else:
print("This object has no %s data" % data_type)
else:
print("This object has no color map")
return None
def _typical_distance(data_obj):
""" Returns a typical distance in a cloud of points.
This is done by taking the size of the bounding box, and dividing it
by the cubic root of the number of points.
"""
x_min, x_max, y_min, y_max, z_min, z_max = data_obj.bounds
distance = numpy.sqrt(((x_max-x_min)**2 + (y_max-y_min)**2 +
(z_max-z_min)**2)/(4*
data_obj.number_of_points**(0.33)))
if distance == 0:
return 1
else:
return 0.4*distance
def _min_distance(x, y, z):
""" Return the minimum interparticle distance in a cloud of points.
This is done by brute force calculation of all the distances
between particle couples.
"""
distances = numpy.sqrt( (x.reshape((-1,)) - x.reshape((1, -1)))**2
+ (y.reshape((-1,)) - y.reshape((1, -1)))**2
+ (z.reshape((-1,)) - z.reshape((1, -1)))**2
)
return distances[distances!=0].min()
def _min_axis_distance(x, y, z):
""" Return the minimum interparticle distance in a cloud of points
along one of the axis.
This is done by brute force calculation of all the distances with
norm infinity between particle couples.
"""
def axis_min(a):
a = numpy.abs(a.reshape((-1,)) - a.reshape((-1, 1)))
a = a[a>0]
if a.size == 0:
return numpy.inf
return a.min()
distances = min(axis_min(x), axis_min(y), axis_min(z))
if distances == numpy.inf:
return 1
else:
return distances
def set_extent(module, extents):
""" Attempts to set the physical extents of the given module.
The extents are given as (xmin, xmax, ymin, ymax, zmin, zmax).
This does not work on an image plane widget, as this module does
not have an actor.
Once you use this function on a module, be aware that other
modules applied on the same data source will not share the same
scale. Thus for instance an outline module will not respect the
outline of the actors whose extent you modified. You should pass
in the same "extents" parameter for this to work.You can have a
look at the wigner.py example for a heavy use of this
functionnality.
**Note**
This function does not work on some specific modules, such as
Outline, Axes, or ImagePlaneWidget. For Outline and Axes, use the
extent keyword argument of mlab.pipeline.outline and
mlab.pipeline.axes.
"""
if not hasattr(module, 'actor'):
print 'Cannot set extents for %s' % module
return
if numpy.all(extents == 0.):
# That the default setting.
return
xmin, xmax, ymin, ymax, zmin, zmax = extents
xo = 0.5*(xmax + xmin)
yo = 0.5*(ymax + ymin)
zo = 0.5*(zmax + zmin)
extentx = 0.5*(xmax - xmin)
extenty = 0.5*(ymax - ymin)
extentz = 0.5*(zmax - zmin)
# Now the actual bounds.
xmin, xmax, ymin, ymax, zmin, zmax = module.actor.actor.bounds
# Scale the object
boundsx = 0.5*(xmax - xmin)
boundsy = 0.5*(ymax - ymin)
boundsz = 0.5*(zmax - zmin)
xs, ys, zs = module.actor.actor.scale
if not numpy.allclose(xmin, xmax):
scalex = xs*extentx/boundsx
else:
scalex = 1
if not numpy.allclose(ymin, ymax):
scaley = ys*extenty/boundsy
else:
scaley = 1
if not numpy.allclose(zmin, zmax):
scalez = zs*extentz/boundsz
else:
scalez = 1
module.actor.actor.scale = (scalex, scaley, scalez)
## Remeasure the bounds
xmin, xmax, ymin, ymax, zmin, zmax = module.actor.actor.bounds
xcenter = 0.5*(xmax + xmin)
ycenter = 0.5*(ymax + ymin)
zcenter = 0.5*(zmax + zmin)
# Center the object
module.actor.actor.origin = (0., 0., 0.)
xpos, ypos, zpos = module.actor.actor.position
module.actor.actor.position = (xpos + xo -xcenter, ypos + yo - ycenter,
zpos + zo -zcenter)
def start_recording(ui=True):
"""Start automatic script recording. If the `ui` parameter is
`True`, it creates a recorder with a user interface, if not it
creates a vanilla recorder without a UI.
**Returns**
The `Recorder` instance created.
"""
from apptools.scripting.api import start_recording as start
e = get_engine()
msg = "Current engine, %s, is already being recorded."%(e)
assert e.recorder is None, msg
r = start(e, ui=ui)
return r
def stop_recording(file=None):
"""Stop the automatic script recording.
**Parameters**
:file: An open file or a filename or `None`. If this is `None`,
nothing is saved.
"""
from apptools.scripting.api import stop_recording as stop
e = get_engine()
r = e.recorder
if r is not None:
stop(e, save=False)
if type(file) in types.StringTypes:
f = open(file, 'w')
r.save(f)
f.close()
elif hasattr(file, 'write') and hasattr(file, 'flush'):
r.save(file)
|