/usr/share/pyshared/tvtk/array_handler.py is in mayavi2 4.0.0-3build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 | """
This module contains all the array handling code for TVTK.
The most important functions provided by this module involve the
conversion of numpy arrays/Python lists to different VTK data arrays
and vice-versa.
Warning: Numpy Character arrays will not work properly since there
seems no unique one-to-one VTK data array type to map it to.
"""
# Author: Prabhu Ramachandran <prabhu_r@users.sf.net>
# Copyright (c) 2004-2008, Enthought, Inc.
# License: BSD Style.
import types
import sys
import vtk
from vtk.util import vtkConstants
try:
from vtk.util import numpy_support
except ImportError:
numpy_support = None
import numpy
# Enthought library imports.
from tvtk.array_ext import set_id_type_array
# Useful constants for VTK arrays.
VTK_ID_TYPE_SIZE = vtk.vtkIdTypeArray().GetDataTypeSize()
if VTK_ID_TYPE_SIZE == 4:
ID_TYPE_CODE = numpy.int32
elif VTK_ID_TYPE_SIZE == 8:
ID_TYPE_CODE = numpy.int64
VTK_LONG_TYPE_SIZE = vtk.vtkLongArray().GetDataTypeSize()
if VTK_LONG_TYPE_SIZE == 4:
LONG_TYPE_CODE = numpy.int32
ULONG_TYPE_CODE = numpy.uint32
elif VTK_LONG_TYPE_SIZE == 8:
LONG_TYPE_CODE = numpy.int64
ULONG_TYPE_CODE = numpy.uint64
BASE_REFERENCE_COUNT = vtk.vtkObject().GetReferenceCount()
######################################################################
# The array cache.
######################################################################
class ArrayCache(object):
"""Caches references to numpy arrays that are not copied but views
of which are converted to VTK arrays. The caching prevents the user
from deleting or resizing the numpy array after it has been sent
down to VTK. The cached arrays are automatically removed when the
VTK array destructs."""
######################################################################
# `object` interface.
######################################################################
def __init__(self):
# The cache.
self._cache = {}
def __len__(self):
return len(self._cache)
def __contains__(self, vtk_arr):
key = vtk_arr.__this__
return self._cache.has_key(key)
######################################################################
# `ArrayCache` interface.
######################################################################
def add(self, vtk_arr, np_arr):
"""Add numpy array corresponding to the vtk array to the
cache."""
key = vtk_arr.__this__
cache = self._cache
# Setup a callback so this cached array reference is removed
# when the VTK array is destroyed. Passing the key to the
# `lambda` function is necessary because the callback will not
# receive the object (it will receive `None`) and thus there
# is no way to know which array reference one has to remove.
vtk_arr.AddObserver('DeleteEvent', lambda o, e, key=key: \
self._remove_array(key))
# Cache the array
cache[key] = np_arr
def get(self, vtk_arr):
"""Return the cached numpy array given a VTK array."""
key = vtk_arr.__this__
return self._cache[key]
######################################################################
# Non-public interface.
######################################################################
def _remove_array(self, key):
"""Private function that removes the cached array. Do not
call this unless you know what you are doing."""
try:
del self._cache[key]
except KeyError:
pass
######################################################################
# Setup a global `_array_cache`. The array object cache caches all the
# converted numpy arrays that are not copied. This prevents the user
# from deleting or resizing the numpy array after it has been sent down
# to VTK.
######################################################################
_dummy = None
# This makes the cache work even when the module is reloaded.
for name in ['array_handler', 'tvtk.array_handler']:
if sys.modules.has_key(name):
mod = sys.modules[name]
if hasattr(mod, '_array_cache'):
_dummy = mod._array_cache
del mod
break
if _dummy:
_array_cache = _dummy
else:
_array_cache = ArrayCache()
del _dummy
######################################################################
# Array conversion functions.
######################################################################
def get_vtk_array_type(numeric_array_type):
"""Returns a VTK typecode given a numpy array."""
# This is a Mapping from numpy array types to VTK array types.
_arr_vtk = {numpy.dtype(numpy.character):vtkConstants.VTK_UNSIGNED_CHAR,
numpy.dtype(numpy.uint8):vtkConstants.VTK_UNSIGNED_CHAR,
numpy.dtype(numpy.uint16):vtkConstants.VTK_UNSIGNED_SHORT,
numpy.dtype(numpy.int8):vtkConstants.VTK_CHAR,
numpy.dtype(numpy.int16):vtkConstants.VTK_SHORT,
numpy.dtype(numpy.int32):vtkConstants.VTK_INT,
numpy.dtype(numpy.uint32):vtkConstants.VTK_UNSIGNED_INT,
numpy.dtype(numpy.float32):vtkConstants.VTK_FLOAT,
numpy.dtype(numpy.float64):vtkConstants.VTK_DOUBLE,
numpy.dtype(numpy.complex64):vtkConstants.VTK_FLOAT,
numpy.dtype(numpy.complex128):vtkConstants.VTK_DOUBLE,
}
_extra = {numpy.dtype(ID_TYPE_CODE):vtkConstants.VTK_ID_TYPE,
numpy.dtype(ULONG_TYPE_CODE):vtkConstants.VTK_UNSIGNED_LONG,
numpy.dtype(LONG_TYPE_CODE):vtkConstants.VTK_LONG,
}
for t in _extra:
if t not in _arr_vtk:
_arr_vtk[t] = _extra[t]
try:
return _arr_vtk[numeric_array_type]
except KeyError:
for key in _arr_vtk:
if numpy.issubdtype(numeric_array_type, key):
return _arr_vtk[key]
raise TypeError, "Couldn't translate array's type to VTK"
def get_vtk_to_numeric_typemap():
"""Returns the VTK array type to numpy array type mapping."""
_vtk_arr = {vtkConstants.VTK_BIT:numpy.bool,
vtkConstants.VTK_CHAR:numpy.int8,
vtkConstants.VTK_UNSIGNED_CHAR:numpy.uint8,
vtkConstants.VTK_SHORT:numpy.int16,
vtkConstants.VTK_UNSIGNED_SHORT:numpy.uint16,
vtkConstants.VTK_INT:numpy.int32,
vtkConstants.VTK_UNSIGNED_INT:numpy.uint32,
vtkConstants.VTK_LONG:LONG_TYPE_CODE,
vtkConstants.VTK_UNSIGNED_LONG:ULONG_TYPE_CODE,
vtkConstants.VTK_ID_TYPE:ID_TYPE_CODE,
vtkConstants.VTK_FLOAT:numpy.float32,
vtkConstants.VTK_DOUBLE:numpy.float64}
return _vtk_arr
def get_numeric_array_type(vtk_array_type):
"""Returns a numpy array typecode given a VTK array type."""
return get_vtk_to_numeric_typemap()[vtk_array_type]
def get_sizeof_vtk_array(vtk_array_type):
"""Returns the size of a VTK array type."""
_size_dict = {vtkConstants.VTK_BIT : 1,
vtkConstants.VTK_CHAR : 1,
vtkConstants.VTK_UNSIGNED_CHAR : 1,
vtkConstants.VTK_SHORT : 2,
vtkConstants.VTK_UNSIGNED_SHORT : 2,
vtkConstants.VTK_INT : 4,
vtkConstants.VTK_UNSIGNED_INT : 4,
vtkConstants.VTK_LONG : VTK_LONG_TYPE_SIZE,
vtkConstants.VTK_UNSIGNED_LONG : VTK_LONG_TYPE_SIZE,
vtkConstants.VTK_ID_TYPE : VTK_ID_TYPE_SIZE,
vtkConstants.VTK_FLOAT : 4,
vtkConstants.VTK_DOUBLE : 8 }
return _size_dict[vtk_array_type]
def create_vtk_array(vtk_arr_type):
"""Internal function used to create a VTK data array from another
VTK array given the VTK array type.
"""
tmp = vtk.vtkDataArray.CreateDataArray(vtk_arr_type)
# CreateDataArray sets the refcount to 3 and this causes a severe
# memory leak.
tmp.SetReferenceCount(BASE_REFERENCE_COUNT)
return tmp
def array2vtk(num_array, vtk_array=None):
"""Converts a real numpy Array (or a Python list) to a VTK array
object.
This function only works for real arrays. Complex arrays are NOT
handled. It also works for multi-component arrays. However, only
1, and 2 dimensional arrays are supported. This function is very
efficient, so large arrays should not be a problem.
Even in cases when no copy of the numpy array data is performed,
a reference to the array is cached. The passed array can
therefore be deleted safely in all circumstances.
Parameters
----------
- num_array : numpy array or Python list/tuple
The input array must be 1 or 2D. A copy of the numeric array
data passed is made in the following circumstances:
1. A Python list/tuple was passed.
2. A non-contiguous numpy array was passed.
3. A `vtkBitArray` instance was passed as the second argument.
4. The types of the `vtk_array` and the `num_array` are not
equivalent to each other. For example if one is an integer
array and the other a float.
- vtk_array : `vtkDataArray` (default: `None`)
If an optional `vtkDataArray` instance, is passed as an argument
then a new array is not created and returned. The passed array
is itself returned.
"""
z = numpy.asarray(num_array)
shape = z.shape
assert len(shape) < 3, \
"Only arrays of dimensionality 2 or lower are allowed!"
assert not numpy.issubdtype(z.dtype, complex), \
"Complex numpy arrays cannot be converted to vtk arrays."\
"Use real() or imag() to get a component of the array before"\
" passing it to vtk."
# First create an array of the right type by using the typecode.
# Bit arrays need special casing.
bit_array = False
if vtk_array is None:
vtk_typecode = get_vtk_array_type(z.dtype)
result_array = create_vtk_array(vtk_typecode)
elif vtk_array.GetDataType() == vtkConstants.VTK_BIT:
vtk_typecode = vtkConstants.VTK_CHAR
result_array = create_vtk_array(vtkConstants.VTK_CHAR)
bit_array = True
else:
vtk_typecode = vtk_array.GetDataType()
result_array = vtk_array
# Find the shape and set number of components.
if len(shape) == 1:
result_array.SetNumberOfComponents(1)
else:
result_array.SetNumberOfComponents(shape[1])
result_array.SetNumberOfTuples(shape[0])
# Ravel the array appropriately.
arr_dtype = get_numeric_array_type(vtk_typecode)
if numpy.issubdtype(z.dtype, arr_dtype):
z_flat = numpy.ravel(z)
else:
z_flat = numpy.ravel(z).astype(arr_dtype)
# Point the VTK array to the numpy data. The last argument (1)
# tells the array not to deallocate.
result_array.SetVoidArray(numpy.getbuffer(z_flat), len(z_flat), 1)
if bit_array:
# Handle bit arrays -- they have to be copied. Note that bit
# arrays are used ONLY when the user has passed one as an
# argument to this function.
vtk_array.SetNumberOfTuples(result_array.GetNumberOfTuples())
vtk_array.SetNumberOfComponents(result_array.GetNumberOfComponents())
for i in range(result_array.GetNumberOfComponents()):
vtk_array.CopyComponent(i, result_array, i)
result_array = vtk_array
else:
# Save a reference to the flatted array in the array cache.
# This prevents the user from deleting or resizing the array
# and getting into serious trouble. This is only done for
# non-bit array cases where the data is not copied.
global _array_cache
_array_cache.add(result_array, z_flat)
return result_array
def vtk2array(vtk_array):
"""Converts a VTK data array to a numpy array.
Given a subclass of vtkDataArray, this function returns an
appropriate numpy array containing the same data. The function
is very efficient since it uses the VTK imaging pipeline to
convert the data. If a sufficiently new version of VTK (5.2) is
installed then it actually uses the buffer interface to return a
view of the VTK array in the returned numpy array.
Parameters
----------
- vtk_array : `vtkDataArray`
The VTK data array to be converted.
"""
typ = vtk_array.GetDataType()
assert typ in get_vtk_to_numeric_typemap().keys(), \
"Unsupported array type %s"%typ
shape = vtk_array.GetNumberOfTuples(), \
vtk_array.GetNumberOfComponents()
if shape[0] == 0:
dtype = get_numeric_array_type(typ)
return numpy.array([], dtype)
# First check if this array already has a numpy array cached, if
# it does, reshape that and return it.
if vtk_array in _array_cache:
arr = _array_cache.get(vtk_array)
if shape[1] == 1:
shape = (shape[0], )
arr = numpy.reshape(arr, shape)
return arr
# If VTK's new numpy support is available, use the buffer interface.
if numpy_support is not None and typ != vtkConstants.VTK_BIT:
dtype = get_numeric_array_type(typ)
result = numpy.frombuffer(vtk_array, dtype=dtype)
if shape[1] == 1:
shape = (shape[0], )
result.shape = shape
return result
# Setup an imaging pipeline to export the array.
img_data = vtk.vtkImageData()
img_data.SetDimensions(shape[0], 1, 1)
if typ == vtkConstants.VTK_BIT:
iarr = vtk.vtkCharArray()
iarr.DeepCopy(vtk_array)
img_data.GetPointData().SetScalars(iarr)
elif typ == vtkConstants.VTK_ID_TYPE:
# Needed since VTK_ID_TYPE does not work with VTK 4.5.
iarr = vtk.vtkLongArray()
iarr.SetNumberOfTuples(vtk_array.GetNumberOfTuples())
nc = vtk_array.GetNumberOfComponents()
iarr.SetNumberOfComponents(nc)
for i in range(nc):
iarr.CopyComponent(i, vtk_array, i)
img_data.GetPointData().SetScalars(iarr)
else:
img_data.GetPointData().SetScalars(vtk_array)
img_data.SetNumberOfScalarComponents(shape[1])
if typ == vtkConstants.VTK_ID_TYPE:
# Hack necessary because vtkImageData can't handle VTK_ID_TYPE.
img_data.SetScalarType(vtkConstants.VTK_LONG)
r_dtype = get_numeric_array_type(vtkConstants.VTK_LONG)
elif typ == vtkConstants.VTK_BIT:
img_data.SetScalarType(vtkConstants.VTK_CHAR)
r_dtype = get_numeric_array_type(vtkConstants.VTK_CHAR)
else:
img_data.SetScalarType(typ)
r_dtype = get_numeric_array_type(typ)
img_data.Update()
exp = vtk.vtkImageExport()
exp.SetInput(img_data)
# Create an array of the right size and export the image into it.
im_arr = numpy.empty((shape[0]*shape[1],), r_dtype)
exp.Export(im_arr)
# Now reshape it.
if shape[1] == 1:
shape = (shape[0], )
im_arr = numpy.reshape(im_arr, shape)
return im_arr
def array2vtkCellArray(num_array, vtk_array=None):
"""Given a nested Python list or a numpy array, this method
creates a vtkCellArray instance and returns it.
A variety of input arguments are supported as described in the
Parameter documentation. If numpy arrays are given, this method
is highly efficient. This function is most efficient if the
passed numpy arrays have a typecode `ID_TYPE_CODE`. Otherwise a
typecast is necessary and this involves an extra copy. This
method *always copies* the input data.
An alternative and more efficient way to build the connectivity
list is to create a vtkIdTypeArray having data of the form
(npts,p0,p1,...p(npts-1), repeated for each cell) and then call
<vtkCellArray_instance>.SetCells(n_cell, id_list).
Parameters
----------
- num_array : numpy array or Python list/tuple
Valid values are:
1. A Python list of 1D lists. Each 1D list can contain one
cell connectivity list. This is very slow and is to be
used only when efficiency is of no consequence.
2. A 2D numpy array with the cell connectivity list.
3. A Python list of 2D numpy arrays. Each numeric array can
have a different shape. This makes it easy to generate a
cell array having cells of different kinds.
- vtk_array : `vtkCellArray` (default: `None`)
If an optional `vtkCellArray` instance, is passed as an argument
then a new array is not created and returned. The passed array
is itself modified and returned.
Example
-------
>>> a = [[0], [1, 2], [3, 4, 5], [6, 7, 8, 9]]
>>> cells = array_handler.array2vtkCellArray(a)
>>> a = numpy.array([[0,1,2], [3,4,5], [6,7,8]], 'l')
>>> cells = array_handler.array2vtkCellArray(a)
>>> l_a = [a[:,:1], a[:2,:2], a]
>>> cells = array_handler.array2vtkCellArray(l_a)
"""
if vtk_array:
cells = vtk_array
else:
cells = vtk.vtkCellArray()
assert cells.GetClassName() == 'vtkCellArray', \
'Second argument must be a `vtkCellArray` instance.'
if len(num_array) == 0:
return cells
########################################
# Internal functions.
def _slow_array2cells(z, cells):
cells.Reset()
vtk_ids = vtk.vtkIdList()
for i in z:
vtk_ids.Reset()
for j in i:
vtk_ids.InsertNextId(j)
cells.InsertNextCell(vtk_ids)
def _get_tmp_array(arr):
try:
tmp_arr = numpy.asarray(arr, ID_TYPE_CODE)
except TypeError:
tmp_arr = arr.astype(ID_TYPE_CODE)
return tmp_arr
def _set_cells(cells, n_cells, id_typ_arr):
vtk_arr = vtk.vtkIdTypeArray()
array2vtk(id_typ_arr, vtk_arr)
cells.SetCells(n_cells, vtk_arr)
########################################
msg = "Invalid argument. Valid types are a Python list of lists,"\
" a Python list of numpy arrays, or a numpy array."
if issubclass(type(num_array), (types.ListType, types.TupleType)):
assert len(num_array[0]) > 0, "Input array must be 2D."
tp = type(num_array[0])
if issubclass(tp, types.ListType): # Pure Python list.
_slow_array2cells(num_array, cells)
return cells
elif issubclass(tp, numpy.ndarray): # List of arrays.
# Check shape of array and find total size.
tot_size = 0
n_cells = 0
for arr in num_array:
assert len(arr.shape) == 2, "Each array must be 2D"
shp = arr.shape
tot_size += shp[0]*(shp[1] + 1)
n_cells += shp[0]
# Create an empty array.
id_typ_arr = numpy.empty((tot_size,), ID_TYPE_CODE)
# Now populate it with the ids.
count = 0
for arr in num_array:
tmp_arr = _get_tmp_array(arr)
shp = arr.shape
sz = shp[0]*(shp[1] + 1)
set_id_type_array(tmp_arr, id_typ_arr[count:count+sz])
count += sz
# Now set them cells.
_set_cells(cells, n_cells, id_typ_arr)
return cells
else:
raise TypeError, msg
elif issubclass(type(num_array), numpy.ndarray):
assert len(num_array.shape) == 2, "Input array must be 2D."
tmp_arr = _get_tmp_array(num_array)
shp = tmp_arr.shape
id_typ_arr = numpy.empty((shp[0]*(shp[1] + 1),), ID_TYPE_CODE)
set_id_type_array(tmp_arr, id_typ_arr)
_set_cells(cells, shp[0], id_typ_arr)
return cells
else:
raise TypeError, msg
def array2vtkPoints(num_array, vtk_points=None):
"""Converts a numpy array/Python list to a vtkPoints object.
Unless a Python list/tuple or a non-contiguous array is given, no
copy of the data is made. Thus the function is very efficient.
Parameters
----------
- num_array : numpy array or Python list/tuple
The input array must be 2D with `shape[1] == 3`.
- vtk_points : `vtkPoints` (default: `None`)
If an optional `vtkPoints` instance, is passed as an argument
then a new array is not created and returned. The passed array
is itself modified and returned.
"""
if vtk_points:
points = vtk_points
else:
points = vtk.vtkPoints()
arr = numpy.asarray(num_array)
assert len(arr.shape) == 2, "Points array must be 2 dimensional."
assert arr.shape[1] == 3, "Incorrect shape: shape[1] must be 3."
vtk_array = array2vtk(arr)
points.SetData(vtk_array)
return points
def array2vtkIdList(num_array, vtk_idlist=None):
"""Converts a numpy array/Python list to a vtkIdList object.
Parameters
----------
- num_array : numpy array or Python list/tuple
The input array must be 2D with `shape[1] == 3`.
- vtk_idlist : `vtkIdList` (default: `None`)
If an optional `vtkIdList` instance, is passed as an argument
then a new array is not created and returned. The passed array
is itself modified and returned.
"""
if vtk_idlist:
ids = vtk_idlist
else:
ids = vtk.vtkIdList()
arr = numpy.asarray(num_array)
assert len(arr.shape) == 1, "Array for vtkIdList must be 1D"
ids.SetNumberOfIds(len(arr))
for i, j in enumerate(arr):
ids.SetId(i, j)
return ids
######################################################################
# Array argument handling functions.
######################################################################
def is_array(arr):
"""Returns True if the passed `arr` is a numpy array or a List."""
if issubclass(type(arr), (numpy.ndarray, types.ListType)):
return True
return False
def convert_array(arr, vtk_typ=None):
"""Convert the given array to the optional type specified by
`vtk_typ`.
Parameters
----------
- arr : numpy array/list.
- vtk_typ : `string` or `None`
represents the type the array is to be converted to.
"""
if vtk_typ:
conv = {'vtkCellArray': array2vtkCellArray,
'vtkPoints': array2vtkPoints,
'vtkIdList': array2vtkIdList}
if vtk_typ in conv.keys():
vtk_arr = getattr(vtk, vtk_typ)()
return conv[vtk_typ](arr, vtk_arr)
elif vtk_typ.find('Array') > -1:
try:
vtk_arr = getattr(vtk, vtk_typ)()
except TypeError: # vtk_typ == 'vtkDataArray'
return array2vtk(arr)
else:
return array2vtk(arr, vtk_arr)
else:
return arr
else:
return array2vtk(arr)
def is_array_sig(s):
"""Given a signature, return if the signature has an array."""
if not isinstance(s, basestring):
return False
arr_types = ['Array', 'vtkPoints', 'vtkIdList']
for i in arr_types:
if s.find(i) > -1:
return True
return False
def is_array_or_vtkarray(arg):
"""Returns True if the argument is an array/Python list or if it
is a vtk array."""
if is_array(arg):
return True
else:
if hasattr(arg, '_vtk_obj'):
if is_array_sig(arg._vtk_obj.__class__.__name__):
return True
return False
def get_correct_sig(args, sigs):
"""Given a list of args and a collection of possible signatures,
this function returns the most appropriate signature. This
function is only called by deref_array. This implies that one of
the signatures has an array type.
"""
# First do the trivial cases.
if sigs is None:
return None
if len(sigs) == 1:
return sigs[0]
else:
# Non-trivial cases.
la = len(args)
candidate_sigs = [s for s in sigs if len(s) == la]
count = len(candidate_sigs)
if count == 0:
# No sig has the right number of args.
msg = "Insufficient number of arguments to method."\
"Valid arguments are:\n%s"%sigs
raise TypeError, msg
elif count == 1:
# If only one of the sigs has the right number of args,
# return it.
return candidate_sigs[0]
else:
# More than one sig has the same number of args.
# Check if args need conversion at all.
array_idx = [i for i, a in enumerate(args) \
if is_array_or_vtkarray(a)]
n_arr = len(array_idx)
if n_arr == 0:
# No conversion necessary so signature info is
# useless.
return None
else:
# Need to find the right sig. This is done by finding
# the first signature that matches all the arrays in
# the argument.
for sig in candidate_sigs:
array_in_sig = [is_array_sig(s) for s in sig]
if array_in_sig.count(True) != len(array_idx):
continue
bad = False
for i in array_idx:
if not array_in_sig[i]:
bad = True
if not bad:
return sig
# Could not find any valid signature, so give up.
return None
def deref_vtk(obj):
"""Dereferences the VTK object from the object if possible. This
is duplicated from `tvtk_base.py` because I'd like to keep this
module independent of `tvtk_base.py`.
"""
if hasattr(obj, '_vtk_obj'):
return obj._vtk_obj
else:
return obj
def deref_array(args, sigs=None):
"""Given a bunch of arguments and optional signature information,
this converts the arguments suitably. If the argument is either a
Python list or a numpy array it is converted to a suitable type
based on the signature information. If it is not an array, but a
TVTK object the VTK object is dereferenced. Otherwise nothing is
done. If no signature information is provided the arrays are
automatically converted (this can sometimes go wrong). The
signature information is provided in the form of a list of lists.
"""
ret = []
sig = get_correct_sig(args, sigs)
if sig:
for a, s in zip(args, sig):
if is_array(a) and is_array_sig(s):
ret.append(convert_array(a, s))
else:
ret.append(deref_vtk(a))
else:
for a in args:
if is_array(a):
ret.append(convert_array(a))
else:
ret.append(deref_vtk(a))
return ret
|