This file is indexed.

/usr/share/pyshared/tvtk/tools/mlab.py is in mayavi2 4.0.0-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
"""A module that provides Matlab like 3d visualization functionality.

The general idea is shamelessly stolen from the `high-level API`_
provided by Octaviz_. Some of the test cases and demos are also
translated from there!

.. _Octaviz: http://octaviz.sourceforge.net/
.. _high-level API: http://octaviz.sourceforge.net/index.php?page=manpagesq

The implementation provided here is object oriented and each
visualization capability is implemented as a class that has traits.
So each of these may be configured.  Each visualization class derives
(ultimately) from MLabBase which is responsible for adding/removing
its actors into the render window.  The classes all require that the
RenderWindow be a `pyface.tvtk.scene.Scene` instance (this constraint
can be relaxed if necessary later on).

This module offers the following broad class of functionality:

`Figure`
  This basically manages all of the objects rendered.  Just like
  figure in any Matlab like environment.  A convenience function
  called `figure` may be used to create a nice Figure instance.

`Glyphs`
  This and its subclasses let one place glyphs at points specified as
  inputs.  The subclasses are: `Arrows`, `Cones`, `Cubes`,
  `Cylinders`, `Spheres`, and `Points`.

`Line3`
  Draws lines between the points specified at initialization time.

`Outline`
  Draws an outline for the contained objects.

`Title`
  Draws a title for the entire figure.

`LUTBase`
  Manages a lookup table and a scalar bar (legend) for it.  This is
  subclassed by all classes that need a LUT.

`SurfRegular`
  MayaVi1's imv.surf like functionality that plots surfaces given x
  (1D), y(1D) and z (or a callable) arrays.

`SurfRegularC`
  Also plots contour lines.

`TriMesh`
  Given triangle connectivity and points, plots a mesh of them.

`FancyTriMesh`
  Plots the mesh using tubes and spheres so its fancier.

`Mesh`
  Given x, y generated from numpy.mgrid, and a z to go with it.  Along
  with optional scalars.  This class builds the triangle connectivity
  (assuming that x, y are from numpy.mgrid) and builds a mesh and
  shows it.

`FancyMesh`
  Like mesh but shows the mesh using tubes and spheres.

`Surf`
  This generates a surface mesh just like Mesh but renders the mesh as
  a surface.

`Contour3`
  Shows contour for a mesh.

`ImShow`
  Allows one to view large numeric arrays as image data using an image
  actor.  This is just like MayaVi1's `mayavi.tools.imv.viewi`.

To see nice examples of all of these look at the `test_*` functions at
the end of this file.  Here is a quick example that uses these test
functions::

 >>> from tvtk.tools import mlab
 >>> f = mlab.figure()
 >>> mlab.test_surf(f) # Create a spherical harmonic.
 >>> f.pop() # Remove it.
 >>> mlab.test_molecule(f) # Show a caffeine molecule.
 >>> f.renwin.reset_zoom() # Scale the view.
 >>> f.pop() # Remove this.
 >>> mlab.test_lines(f) # Show pretty lines.
 >>> f.clear() # Remove all the stuff on screen.

"""
# Author: Prabhu Ramachandran <prabhu_r@users.sf.net>
# Copyright (c) 2005-2007, Enthought, Inc.
# License: BSD Style.


import numpy

from traits.api import HasTraits, List, Instance, Any, Float, Bool, \
                                 Str, Trait, Int
from pyface.api import GUI

from tvtk.api import tvtk
from tvtk.tvtk_base import TVTKBase, vtk_color_trait

from tvtk.tools import ivtk

# Set this to False to not use LOD Actors.
USE_LOD_ACTOR = True

VTK_VER = float(tvtk.Version().vtk_version[:3])

######################################################################
# Utility functions.
######################################################################
def _make_actor(**kwargs):
    """Return a TVTK actor.  If `mlab.USE_LOD_ACTOR` is `True` it
    returns an LODActor if not it returns a normal actor.
    """
    if USE_LOD_ACTOR:
        r = tvtk.LODActor(number_of_cloud_points=1500)
        r.property.point_size = 2.0
        r.set(**kwargs)
        return r
    else:
        return tvtk.Actor(**kwargs)


def _create_structured_points_direct(x, y, z=None):
    """Creates a StructuredPoints object given input data in the form
    of numpy arrays.

    Input Arguments:
       x -- Array of x-coordinates.  These should be regularly spaced.

       y -- Array of y-coordinates.  These should be regularly spaced.

       z -- Array of z values for the x, y values given.  The values
       should be computed such that the z values are computed as x
       varies fastest and y next.  If z is None then no scalars are
       associated with the structured points.  Only the structured
       points data set is created.
    """

    nx = len(x)
    ny = len(y)
    if z is not None:
        nz = numpy.size(z)
        assert nx*ny == nz, "len(x)*len(y) != len(z)"\
               "You passed nx=%d, ny=%d,  nz=%d"%(nx, ny, nz)

    xmin, ymin = x[0], y[0]
    dx, dy= (x[1] - x[0]), (y[1] - y[0])

    sp = tvtk.StructuredPoints(dimensions=(nx,ny,1),
                               origin=(xmin, ymin, 0),
                               spacing=(dx, dy, 1))
    if z is not None:
        sp.point_data.scalars = numpy.ravel(z)
        sp.point_data.scalars.name = 'scalars'
    return sp


def sampler(xa, ya, func, *args, **kwargs):
    """Samples a function at an array of ordered points (with equal
    spacing) and returns an array of scalars as per VTK's requirements
    for a structured points data set, i.e. x varying fastest and y
    varying next.

    Input Arguments:
        xa -- Array of x points.

        ya -- Array if y points.

        func -- function of x, and y to sample.

        args -- additional positional arguments for func()
        (default is empty)

        kwargs -- a dict of additional keyword arguments for func()
        (default is empty)
    """
    ret = func(xa[:,None] + numpy.zeros_like(ya),
               numpy.transpose(ya[:,None] + numpy.zeros_like(xa)),
               *args, **kwargs
               )
    return numpy.transpose(ret)


def _check_sanity(x, y, z):
    """Checks the given arrays to see if they are suitable for
    surf."""
    msg = "Only ravelled or 2D arrays can be viewed! "\
          "This array has shape %s" % str(z.shape)
    assert len(z.shape) <= 2, msg

    if len( z.shape ) == 2:
        msg = "len(x)*len(y) != len(z.flat).  You passed "\
              "nx=%d, ny=%d, shape of z=%s"%(len(x), len(y), z.shape)
        assert z.shape[0]*z.shape[1] == len(x)*len(y), msg

        msg = "length of y(%d) and x(%d) must match shape of z "\
              "%s. (Maybe you need to swap x and y?)"%(len(y), len(x),
                                                        str(z.shape))
        assert z.shape == (len(y), len(x)), msg


def squeeze(a):
    "Returns a with any ones from the shape of a removed"
    a = numpy.asarray(a)
    b = numpy.asarray(a.shape)
    val = numpy.reshape(a,
                          tuple(numpy.compress(numpy.not_equal(b, 1), b)))
    return val


def make_surf_actor(x, y, z, warp=1, scale=[1.0, 1.0, 1.0],
                    make_actor=True, *args, **kwargs):
    """Creates a surface given regularly spaced values of x, y and the
    corresponding z as arrays.  Also works if z is a function.
    Currently works only for regular data - can be enhanced later.

    Parameters
    ----------

        x -- Array of x points (regularly spaced)

        y -- Array if y points (regularly spaced)

        z -- A 2D array for the x and y points with x varying fastest
        and y next.  Also will work if z is a callable which supports
        x and y arrays as the arguments.

        warp -- If true, warp the data to show a 3D surface
        (default = 1).

        scale -- Scale the x, y and z axis as per passed values.
        Defaults to [1.0, 1.0, 1.0].

        make_actor -- also create actors suitably (default True)

        args -- additional positional arguments for func()
        (default is empty)

        kwargs -- a dict of additional keyword arguments for func()
        (default is empty)
    """

    if callable(z):
        zval = numpy.ravel(sampler(x, y, z, *args, **kwargs))
        x, y = squeeze(x), squeeze(y)
    else:
        x, y = squeeze(x), squeeze(y)
        _check_sanity(x, y, z)
        zval = numpy.ravel(z)
        assert len(zval) > 0, "z is empty - nothing to plot!"

    xs = x*scale[0]
    ys = y*scale[1]
    data = _create_structured_points_direct(xs, ys, zval)
    if not make_actor:
        return data
    if warp:
        geom_f = tvtk.ImageDataGeometryFilter(input=data)

        warper = tvtk.WarpScalar(input=geom_f.output,
                                 scale_factor=scale[2])
        normals = tvtk.PolyDataNormals(input=warper.output,
                                       feature_angle=45)

        mapper = tvtk.PolyDataMapper(input=normals.output,
                                     scalar_range=(min(zval),max(zval)))
    else:
        mapper = tvtk.PolyDataMapper(input=data,
                                     scalar_range=(min(zval),max(zval)))
    actor = _make_actor(mapper=mapper)
    return data, actor


def make_triangle_polydata(triangles, points, scalars=None):
    t = numpy.asarray(triangles, 'l')
    assert t.shape[1] == 3, "The list of polygons must be Nx3."

    if scalars is not None:
        assert len(points) == len(numpy.ravel(scalars))

    pd = tvtk.PolyData(points=points, polys=t)
    if scalars is not None:
        pd.point_data.scalars = numpy.ravel(scalars)
        pd.point_data.scalars.name = 'scalars'
    return pd


def make_triangles_points(x, y, z, scalars=None):
    """Given x, y, and z co-ordinates made using numpy.mgrid and
    optional scalars.  This function returns triangles and points
    corresponding to a mesh formed by them.

    Parameters
    ----------

    - x : array
        A list of x coordinate values formed using numpy.mgrid.
    - y : array
        A list of y coordinate values formed using numpy.mgrid.
    - z : array
        A list of z coordinate values formed using numpy.mgrid.
    - scalars : array (optional)
        Scalars to associate with the points.
    """
    assert len(x.shape) == 2, "Array x must be 2 dimensional."
    assert len(y.shape) == 2, "Array y must be 2 dimensional."
    assert len(z.shape) == 2, "Array z must be 2 dimensional."
    assert x.shape == y.shape, "Arrays x and y must have same shape."
    assert y.shape == z.shape, "Arrays y and z must have same shape."

    nx, ny = x.shape
    i, j = numpy.mgrid[0:nx-1,0:ny-1]
    i, j = numpy.ravel(i), numpy.ravel(j)
    t1 = i*ny+j, (i+1)*ny+j, (i+1)*ny+(j+1)
    t2 = (i+1)*ny+(j+1), i*ny+(j+1), i*ny+j
    nt = len(t1[0])
    triangles = numpy.zeros((nt*2, 3), 'l')
    triangles[0:nt,0], triangles[0:nt,1], triangles[0:nt,2] = t1
    triangles[nt:,0], triangles[nt:,1], triangles[nt:,2] = t2

    points = numpy.zeros((nx, ny, 3), 'd')
    points[:,:,0], points[:,:,1], points[:,:,2] = x, y, z
    points = numpy.reshape(points, (nx*ny, 3))

    return triangles, points



######################################################################
# `MLabBase` class.
######################################################################
class MLabBase(HasTraits):
    # List of actors.
    actors = List(TVTKBase)
    # Renderwindow to render into.
    renwin = Any

    def update(self):
        self.renwin.render()

    def render(self):
        if self.renwin:
            self.renwin.render()

    def _renwin_changed(self, old, new):
        if old:
            old.remove_actors(self.actors)
            old.render()
        if new:
            new.add_actors(self.actors)
            new.render()

    def _actors_changed(self, old, new):
        self._handle_actors(old, new)

    def _actors_items_changed(self, list_event):
        self._handle_actors(list_event.removed, list_event.added)

    def _handle_actors(self, removed, added):
        rw = self.renwin
        if rw:
            rw.remove_actors(removed)
            rw.add_actors(added)
            rw.render()



######################################################################
# `Glyphs` class.
######################################################################
class Glyphs(MLabBase):
    # The source glyph which is placed at various locations.
    glyph_source = Any

    # A Glyph3D instance replicates the glyph_sources at various
    # points.
    glyph = Instance(tvtk.Glyph3D, (), {'vector_mode':'use_vector',
                                        'scale_mode':'data_scaling_off'})

    # Color of the glyphs.
    color = vtk_color_trait((1.0, 1.0, 1.0))

    def __init__(self, points, vectors=None, scalars=None, **traits):
        super(Glyphs, self).__init__(**traits)

        if vectors is not None:
            assert len(points) == len(vectors)
        if scalars is not None:
            assert len(points) == len(scalars)

        self.points = points
        self.vectors = vectors
        self.scalars = scalars

        polys = numpy.arange(0, len(points), 1, 'l')
        polys = numpy.reshape(polys, (len(points), 1))
        pd = tvtk.PolyData(points=points, polys=polys)
        if self.vectors is not None:
            pd.point_data.vectors = vectors
            pd.point_data.vectors.name = 'vectors'
        if self.scalars is not None:
            pd.point_data.scalars = scalars
            pd.point_data.scalars.name = 'scalars'

        self.poly_data = pd

        self.glyph.input = pd
        if self.glyph_source:
            self.glyph.source = self.glyph_source.output

        mapper = tvtk.PolyDataMapper(input=self.glyph.output)
        actor = _make_actor(mapper=mapper)
        actor.property.color = self.color
        self.actors.append(actor)

    def update(self):
        self.poly_data.update()
        self.renwin.render()

    def _color_changed(self, val):
        if self.actors:
            self.actors[0].property.color = val
        self.render()

    def _glyph_source_changed(self, val):
        self.glyph.source = val.output
        self.render()


######################################################################
# `Arrows` class.
######################################################################
class Arrows(Glyphs):
    # The arrow glyph which is placed at various locations.
    glyph_source = Instance(tvtk.ArrowSource, ())

######################################################################
# `Cones` class.
######################################################################
class Cones(Glyphs):
    # The cone glyph which is placed at various locations.
    glyph_source = Instance(tvtk.ConeSource, ())

    # Radius of the cone.
    radius = Float(0.05, desc='radius of the cone')

    def __init__(self, points, vectors=None, scalars=None, **traits):
        super(Cones, self).__init__(points, vectors, scalars, **traits)
        self._radius_changed(self.radius)

    def _radius_changed(self, val):
        self.glyph_source.radius = val
        self.render()


######################################################################
# `Cubes` class.
######################################################################
class Cubes(Glyphs):
    # The cube glyph which is placed at various locations.
    glyph_source = Instance(tvtk.CubeSource, ())
    # The side length of the cube.
    length = Float(0.05, desc='side length of the cube')

    def __init__(self, points, vectors=None, scalars=None, **traits):
        super(Cubes, self).__init__(points, vectors, scalars, **traits)
        self._radius_changed(self.radius)

    def _length_changed(self, val):
        self.glyph_source.x_length = val
        self.glyph_source.y_length = val
        self.glyph_source.z_length = val
        self.render()


######################################################################
# `Cylinders` class.
######################################################################
class Cylinders(Glyphs):
    # The cylinder glyph which is placed at various locations.
    glyph_source = Instance(tvtk.CylinderSource, ())


######################################################################
# `Spheres` class.
######################################################################
class Spheres(Glyphs):
    # The sphere which is placed at various locations.
    glyph_source = Instance(tvtk.SphereSource, (),
                            {'phi_resolution':15,
                             'theta_resolution':30})
    # Radius of the sphere.
    radius = Float(0.05, desc='radius of the sphere')

    def __init__(self, points, vectors=None, scalars=None, **traits):
        super(Spheres, self).__init__(points, vectors, scalars, **traits)
        self._radius_changed(self.radius)

    def _radius_changed(self, val):
        self.glyph_source.radius = val
        self.render()


######################################################################
# `Points` class.
######################################################################
class Points(Glyphs):
    # The point which is placed at various locations.
    glyph_source = Instance(tvtk.PointSource, (),
                            {'radius':0, 'number_of_points':1})


######################################################################
# `Line3` class.
######################################################################
class Line3(MLabBase):
    # Radius of the tube filter.
    radius = Float(0.01, desc='radius of the tubes')
    # Should a tube filter be used or not.
    use_tubes = Bool(True,
                     desc='specifies if the tube filter should be used')

    # The Tube filter used to generate tubes from the lines.
    tube_filter = Instance(tvtk.TubeFilter, (), {'number_of_sides':6})

    # Color of the actor.
    color = vtk_color_trait((1.0, 1.0, 1.0))

    def __init__(self, points, **traits):
        super(MLabBase, self).__init__(**traits)

        assert len(points[0]) == 3, "The points must be 3D"

        self.points = points

        np = len(points) - 1
        lines = numpy.zeros((np, 2), 'l')
        lines[:,0] = numpy.arange(0, np-0.5, 1, 'l')
        lines[:,1] = numpy.arange(1, np+0.5, 1, 'l')
        pd = tvtk.PolyData(points=points, lines=lines)
        self.poly_data = pd

        mapper = tvtk.PolyDataMapper()
        self.mapper = mapper
        tf = self.tube_filter
        tf.radius = self.radius
        if self.use_tubes:
            tf.input = pd
            mapper.input = tf.output

        a = _make_actor(mapper=mapper)
        a.property.color = self.color
        self.actors.append(a)

    def _radius_changed(self, val):
        self.tube_filter.radius = val
        self.render()

    def _use_tubes_changed(self, val):
        if val:
            tf = self.tube_filter
            tf.input = self.poly_data
            self.mapper.input = tf.output
        else:
            self.mapper.input = self.poly_data
        self.render()

    def _color_changed(self, val):
        if self.actors:
            self.actors[0].property.color = val
        self.render()


######################################################################
# `Outline` class.
######################################################################
class Outline(MLabBase):
    # The axis instance to use to annotate the outline
    axis = Instance(tvtk.CubeAxesActor2D, (),
                    {'label_format':"%4.2g", 'fly_mode':"outer_edges",
                     'font_factor':1.25, 'number_of_labels':5,
                     'corner_offset':0.0, 'scaling':0})
    # The outline source.
    outline = Instance(tvtk.OutlineSource, ())

    def __init__(self, **traits):
        super(Outline, self).__init__(**traits)

        out_mapper = tvtk.PolyDataMapper(input=self.outline.output)
        out_actor = _make_actor(mapper=out_mapper)
        axis = self.axis
        if hasattr(axis, 'view_prop'):
            axis.view_prop = out_actor
        else:
            axis.prop = out_actor

        self.actors.extend([out_actor, axis])

    def update(self):
        if self.renwin:
            rw = self.renwin
            v1, v2 = [x.visibility for x in self.actors]
            self.actors[0].visibility = 0
            self.actors[1].visibility = 0
            rw.render()
            bounds = rw.renderer.compute_visible_prop_bounds()
            self.outline.bounds = bounds
            rw.render()
            self.actors[0].visibility = v1
            self.actors[1].visibility = v2

    def _renwin_changed(self, old, new):
        super(Outline, self)._renwin_changed(old, new)
        if old:
            old.on_trait_change(self.update, 'actor_added', remove=True)
            old.on_trait_change(self.update, 'actor_removed', remove=True)
        if new:
            self.axis.camera = new.renderer.active_camera
            new.on_trait_change(self.update, 'actor_added')
            new.on_trait_change(self.update, 'actor_removed')


######################################################################
# `Title` class.
######################################################################
class Title(MLabBase):
    # Text of the title.
    text = Str('Title', desc='text of the title')

    # The text actor that renders the title.
    text_actor = Instance(tvtk.TextActor, ())

    def __init__(self, **traits):
        super(Title, self).__init__(**traits)

        ta = self.text_actor
        if VTK_VER > 5.1:
            ta.set(text_scale_mode='prop', height=0.05, input=self.text)
        else:
            ta.set(scaled_text=True, height=0.05, input=self.text)
        pc = ta.position_coordinate
        pc.coordinate_system = 'normalized_viewport'
        pc.value = 0.25, 0.925, 0.0
        self.actors.append(self.text_actor)

    def _text_changed(self, val):
        self.text_actor.input = val
        self.render()

######################################################################
# `LUTBase` class.
######################################################################
class LUTBase(MLabBase):
    # The choices for the lookuptable
    lut_type = Trait('red-blue', 'red-blue', 'blue-red',
                     'black-white', 'white-black',
                     desc='the type of the lookup table')

    # The LookupTable instance.
    lut = Instance(tvtk.LookupTable, ())

    # The scalar bar.
    scalar_bar = Instance(tvtk.ScalarBarActor, (),
                          {'orientation':'horizontal',
                           'width':0.8, 'height':0.17})

    # The scalar_bar widget.
    scalar_bar_widget = Instance(tvtk.ScalarBarWidget, ())

    # The legend name for the scalar bar.
    legend_text = Str('Scalar', desc='the title of the legend')

    # Turn on/off the visibility of the scalar bar.
    show_scalar_bar = Bool(False,
                           desc='specifies if scalar bar is shown or not')

    def __init__(self, **traits):
        super(LUTBase, self).__init__(**traits)
        self.lut.number_of_colors = 256
        self._lut_type_changed(self.lut_type)
        self.scalar_bar.set(lookup_table=self.lut,
                            title=self.legend_text)
        pc = self.scalar_bar.position_coordinate
        pc.coordinate_system = 'normalized_viewport'
        pc.value = 0.1, 0.01, 0.0
        self.scalar_bar_widget.set(scalar_bar_actor=self.scalar_bar,
                                   key_press_activation=False)

    def _lut_type_changed(self, val):
        if val == 'red-blue':
            hue_range = 0.0, 0.6667
            saturation_range = 1.0, 1.0
            value_range = 1.0, 1.0
        elif val == 'blue-red':
            hue_range = 0.6667, 0.0
            saturation_range = 1.0, 1.0
            value_range = 1.0, 1.0
        elif val == 'black-white':
            hue_range = 0.0, 0.0
            saturation_range = 0.0, 0.0
            value_range = 0.0, 1.0
        elif val == 'white-black':
            hue_range = 0.0, 0.0
            saturation_range = 0.0, 0.0
            value_range = 1.0, 0.0
        lut = self.lut
        lut.set(hue_range=hue_range, saturation_range=saturation_range,
                value_range=value_range, number_of_table_values=256,
                ramp='sqrt')
        lut.force_build()

        self.render()

    def _legend_text_changed(self, val):
        self.scalar_bar.title = val
        self.scalar_bar.modified()
        self.render()

    def _show_scalar_bar_changed(self, val):
        if self.renwin:
            self.scalar_bar_widget.enabled = val
            self.renwin.render()

    def _renwin_changed(self, old, new):
        sbw = self.scalar_bar_widget
        if old:
            sbw.interactor = None
            old.render()
        if new:
            sbw.interactor = new.interactor
            sbw.enabled = self.show_scalar_bar
            new.render()
        super(LUTBase, self)._renwin_changed(old, new)



######################################################################
# `SurfRegular` class.
######################################################################
class SurfRegular(LUTBase):

    def __init__(self, x, y, z, warp=1, scale=[1.0, 1.0, 1.0], f_args=(),
                 f_kwargs=None, **traits):
        super(SurfRegular, self).__init__(**traits)

        if f_kwargs is None:
            f_kwargs = {}

        data, actor = make_surf_actor(x, y, z, warp, scale, *f_args,
                                      **f_kwargs)
        self.data = data
        mapper = actor.mapper
        mapper.lookup_table = self.lut
        self.lut.table_range = mapper.scalar_range

        self.actors.append(actor)


######################################################################
# `SurfRegularC` class.
######################################################################
class SurfRegularC(LUTBase):
    # Number of contours.
    number_of_contours = Int(10, desc='number of contours values')

    # The contour filter.
    contour_filter = Instance(tvtk.ContourFilter, ())

    def __init__(self, x, y, z, warp=1, scale=[1.0, 1.0, 1.0], f_args=(),
                 f_kwargs=None, **traits):
        super(SurfRegularC, self).__init__(**traits)

        if f_kwargs is None:
            f_kwargs = {}

        data, actor = make_surf_actor(x, y, z, warp, scale, *f_args,
                                      **f_kwargs)
        mapper = actor.mapper
        mapper.lookup_table = self.lut
        self.lut.table_range = mapper.scalar_range
        self.data = data

        dr = data.point_data.scalars.range
        cf = self.contour_filter
        cf.input = data
        cf.generate_values(self.number_of_contours, dr[0], dr[1])
        mapper = tvtk.PolyDataMapper(input=cf.output, lookup_table=self.lut)
        cont_actor = _make_actor(mapper=mapper)

        self.actors.extend([actor, cont_actor])

    def _number_of_contours_changed(self, val):
        dr = self.data.point_data.scalars.range
        self.contour_filter.generate_values(val, dr[0], dr[1])
        self.render()


######################################################################
# `TriMesh` class.
######################################################################
class TriMesh(LUTBase):
    # Disables/enables scalar visibility.
    scalar_visibility = Bool(False, desc='show scalar visibility')

    # Representation of the mesh as surface or wireframe.
    surface = Bool(False, desc='show as surface or wireframe')

    # Color of the mesh.
    color = vtk_color_trait((0.5, 1.0, 0.5))

    def __init__(self, triangles, points, scalars=None, **traits):
        """
        Parameters
        ----------

        - triangles : array
          This contains a list of vertex indices forming the triangles.
        - points : array
          Contains the list of points referred to in the triangle list.
        - scalars : array (optional)
          Scalars to associate with the points.
        """
        super(TriMesh, self).__init__(**traits)

        self.pd = make_triangle_polydata(triangles, points, scalars)

        mapper = tvtk.PolyDataMapper(input=self.pd, lookup_table=self.lut,
                                     scalar_visibility=self.scalar_visibility)
        if scalars is not None:
            rs = numpy.ravel(scalars)
            dr = min(rs), max(rs)
            mapper.scalar_range = dr
            self.lut.table_range = dr

        actor = _make_actor(mapper=mapper)
        representation = 'w'
        if self.surface:
            representation = 's'
        if representation == 'w':
            actor.property.set(diffuse=0.0, ambient=1.0, color=self.color,
                               representation=representation)
        else:
            actor.property.set(diffuse=1.0, ambient=0.0, color=self.color,
                               representation=representation)

        self.actors.append(actor)

    def _scalar_visibility_changed(self, val):
        if self.actors:
            mapper = self.actors[0].mapper
            mapper.scalar_visibility = val
        self.render()

    def _surface_changed(self, val):
        if self.actors:
            representation = 'w'
            if val:
                representation = 's'

            actor = self.actors[0]
            if representation == 'w':
                actor.property.set(diffuse=0.0, ambient=1.0,
                                   representation=representation)
            else:
                actor.property.set(diffuse=1.0, ambient=0.0,
                                   representation=representation)
        self.render()

    def _color_changed(self, val):
        if self.actors:
            self.actors[0].property.color = val
        self.render()


######################################################################
# `FancyTriMesh` class.
######################################################################
class FancyTriMesh(LUTBase):
    """Shows a mesh of triangles and draws the edges as tubes and
    points as balls."""
    # Disables/enables scalar visibility.
    scalar_visibility = Bool(False, desc='show scalar visibility')

    # Color of the mesh.
    color = vtk_color_trait((0.5, 1.0, 0.5))

    # The radius of the tubes.
    tube_radius = Float(0.0, desc='radius of the tubes')

    # The radius of the spheres.
    sphere_radius = Float(0.0, desc='radius of the spheres')

    # The TubeFilter used to make the tubes for the edges.
    tube_filter = Instance(tvtk.TubeFilter, (),
                           {'vary_radius':'vary_radius_off',
                            'number_of_sides':6})
    # The sphere source for the points.
    sphere_source = Instance(tvtk.SphereSource, (),
                             {'theta_resolution':12,
                              'phi_resolution':12})

    def __init__(self, triangles, points, scalars=None, **traits):
        """
        Parameters
        ----------

        - triangles : array
          This contains a list of vertex indices forming the triangles.
        - points : array
          Contains the list of points referred to in the triangle list.
        - scalars : array (optional)
          Scalars to associate with the points.
        """
        super(FancyTriMesh, self).__init__(**traits)

        self.points = points
        self.pd = make_triangle_polydata(triangles, points, scalars)

        # Update the radii so the default is computed correctly.
        self._tube_radius_changed(self.tube_radius)
        self._sphere_radius_changed(self.sphere_radius)

        scalar_vis = self.scalar_visibility

        # Extract the edges and show the lines as tubes.
        self.extract_filter = tvtk.ExtractEdges(input=self.pd)
        extract_f = self.extract_filter
        self.tube_filter.set(input=extract_f.output,
                             radius=self.tube_radius)
        edge_mapper = tvtk.PolyDataMapper(input=self.tube_filter.output,
                                          lookup_table=self.lut,
                                          scalar_visibility=scalar_vis)
        edge_actor = _make_actor(mapper=edge_mapper)
        edge_actor.property.color = self.color

        # Create the spheres for the points.
        self.sphere_source.radius = self.sphere_radius
        spheres = tvtk.Glyph3D(scaling=0, source=self.sphere_source.output,
                               input=extract_f.output)
        sphere_mapper = tvtk.PolyDataMapper(input=spheres.output,
                                            lookup_table=self.lut,
                                            scalar_visibility=scalar_vis)
        sphere_actor = _make_actor(mapper=sphere_mapper)
        sphere_actor.property.color = self.color

        if scalars is not None:
            rs = numpy.ravel(scalars)
            dr = min(rs), max(rs)
            self.lut.table_range = dr
            edge_mapper.scalar_range = dr
            sphere_mapper.scalar_range = dr

        self.actors.extend([edge_actor, sphere_actor])

    def _scalar_visibility_changed(self, val):
        if self.actors:
            for i in self.actors:
                i.mapper.scalar_visibility = val
        self.render()

    def _tube_radius_changed(self, val):
        points = self.points
        if val < 1.0e-9:
            val = (max(numpy.ravel(points)) -
                   min(numpy.ravel(points)))/250.0
        self.tube_radius = val
        self.tube_filter.radius = val
        self.render()

    def _sphere_radius_changed(self, val):
        points = self.points
        if val < 1.0e-9:
            val = (max(numpy.ravel(points)) -
                       min(numpy.ravel(points)))/100.0
        self.sphere_radius = val
        self.sphere_source.radius = val
        self.render()

    def _color_changed(self, val):
        if self.actors:
            self.actors[0].property.color = val
        self.render()

######################################################################
# `Mesh` class.
######################################################################
class Mesh(TriMesh):
    def __init__(self, x, y, z, scalars=None, **traits):
        """
        Parameters
        ----------

        - x : array
          A list of x coordinate values formed using numpy.mgrid.
        - y : array
          A list of y coordinate values formed using numpy.mgrid.
        - z : array
          A list of z coordinate values formed using numpy.mgrid.
        - scalars : array (optional)
          Scalars to associate with the points.
        """
        triangles, points = make_triangles_points(x, y, z, scalars)
        super(Mesh, self).__init__(triangles, points, scalars, **traits)


######################################################################
# `FancyMesh` class.
######################################################################
class FancyMesh(FancyTriMesh):
    def __init__(self, x, y, z, scalars=None, **traits):
        """
        Parameters
        ----------

        - x : array
          A list of x coordinate values formed using numpy.mgrid.
        - y : array
          A list of y coordinate values formed using numpy.mgrid.
        - z : array
          A list of z coordinate values formed using numpy.mgrid.
        - scalars : array (optional)
          Scalars to associate with the points.
        """
        triangles, points = make_triangles_points(x, y, z, scalars)
        super(FancyMesh, self).__init__(triangles, points, scalars, **traits)


######################################################################
# `Surf` class.
######################################################################
class Surf(LUTBase):
    # Disables/enables scalar visibility.
    scalar_visibility = Bool(True, desc='show scalar visibility')

    # Color of the mesh.
    color = vtk_color_trait((0.5, 1.0, 0.5))

    def __init__(self, x, y, z, scalars=None, **traits):
        """
        Parameters
        ----------

        - x : array
          A list of x coordinate values formed using numpy.mgrid.
        - y : array
          A list of y coordinate values formed using numpy.mgrid.
        - z : array
          A list of z coordinate values formed using numpy.mgrid.
        - scalars : array (optional)
          Scalars to associate with the points.
        """
        super(Surf, self).__init__(**traits)
        triangles, points = make_triangles_points(x, y, z, scalars)
        self.pd = make_triangle_polydata(triangles, points, scalars)

        mapper = tvtk.PolyDataMapper(input=self.pd, lookup_table=self.lut,
                                     scalar_visibility=self.scalar_visibility)
        if scalars is not None:
            rs = numpy.ravel(scalars)
            dr = min(rs), max(rs)
            mapper.scalar_range = dr
            self.lut.table_range = dr

        actor = _make_actor(mapper=mapper)
        actor.property.set(color=self.color)
        self.actors.append(actor)

    def _scalar_visibility_changed(self, val):
        if self.actors:
            mapper = self.actors[0].mapper
            mapper.scalar_visibility = val
        self.render()

    def _surface_changed(self, val):
        if self.actors:
            representation = 'w'
            if val:
                representation = 's'
            self.actors[0].property.representation = representation
        self.render()

    def _color_changed(self, val):
        if self.actors:
            self.actors[0].property.color = val
        self.render()


######################################################################
# `Contour3` class.
######################################################################
class Contour3(LUTBase):
    # Number of contours.
    number_of_contours = Int(10, desc='number of contours values')

    # The contour filter.
    contour_filter = Instance(tvtk.ContourFilter, ())

    def __init__(self, x, y, z, scalars, **traits):
        """
        Parameters
        ----------

        - x : array
          A list of x coordinate values formed using numpy.mgrid.
        - y : array
          A list of y coordinate values formed using numpy.mgrid.
        - z : array
          A list of z coordinate values formed using numpy.mgrid.
        - scalars : array
          Scalars to associate with the points.
        """
        super(Contour3, self).__init__(**traits)
        triangles, points = make_triangles_points(x, y, z, scalars)
        self.pd = make_triangle_polydata(triangles, points, scalars)

        dr = self.pd.point_data.scalars.range
        self.lut.table_range = dr

        cf = self.contour_filter
        cf.input = self.pd
        cf.generate_values(self.number_of_contours, dr[0], dr[1])
        mapper = tvtk.PolyDataMapper(input=cf.output, lookup_table=self.lut,
                                     scalar_range=dr)
        cont_actor = _make_actor(mapper=mapper)

        self.actors.append(cont_actor)

    def _number_of_contours_changed(self, val):
        dr = self.pd.point_data.scalars.range
        self.contour_filter.generate_values(val, dr[0], dr[1])
        self.render()


######################################################################
# `ImShow` class.
######################################################################
class ImShow(LUTBase):
    """Allows one to view a 2D numpy array as an image.  This works
    best for very large arrays (like 1024x1024 arrays).
    """

    # Interpolate the image or not.
    interpolate = Bool(False, desc='specifies if image should be interpolated')

    def __init__(self, arr, scale=[1.0, 1.0, 1.0], **traits):
        """
        Parameters
        ----------
        - arr : Array to be viewed.

        - scale : Scale the x, y and z axis as per passed values.
          Defaults to [1.0, 1.0, 1.0].
        """
        super(ImShow, self).__init__(**traits)

        assert len(arr.shape) == 2, "Only 2D arrays can be viewed!"

        ny, nx = arr.shape
        dx, dy, junk = numpy.array(scale)*1.0
        xa = numpy.arange(0, nx*scale[0] - 0.1*dx, dx, 'f')
        ya = numpy.arange(0, ny*scale[1] - 0.1*dy, dy, 'f')

        arr_flat = numpy.ravel(arr)
        min_val = min(arr_flat)
        max_val = max(arr_flat)

        sp = _create_structured_points_direct(xa, ya)
        lut = self.lut
        lut.table_range = min_val, max_val
        a = lut.map_scalars(arr_flat, 0, 0)
        sp.point_data.scalars = a
        sp.point_data.scalars.name = 'scalars'
        sp.scalar_type = 'unsigned_char'
        sp.number_of_scalar_components = 4

        ia = tvtk.ImageActor(input=sp, interpolate=self.interpolate)

        self.actors.append(ia)

    def _interpolate_changed(self, val):
        if self.actors:
            ia = self.actors[0]
            ia.interpolate = val
        self.render()


######################################################################
# `Figure` class.
######################################################################
class Figure(HasTraits):
    """A Figure manages varuous MLabBase objects.  Each of these
    objects contains an actor and does something neat."""

    # The various instances of MLabBase that populate this figure.
    objects = List(MLabBase)

    def __init__(self, renwin, **traits):
        super(Figure, self).__init__(**traits)
        self.renwin = renwin

    def add(self, obj):
        """Add an object to the figure.  This adds the actors of the
        object to the renderwindow."""
        self.objects.append(obj)

    def pop(self):
        """Pops out the last object."""
        return self.objects.pop()

    def clear(self):
        """Removes all objects in the figure."""
        self.objects = []

    def _objects_changed(self, new, old):
        self._handle_objects(new, old)

    def _objects_items_changed(self, list_event):
        self._handle_objects(list_event.removed, list_event.added)

    def _handle_objects(self, removed, added):
        for obj in removed:
            obj.renwin = None
        rw = self.renwin
        for obj in added:
            obj.renwin = rw
        rw.reset_zoom()
        rw.render()


def figure(outline=True, browser=True):
    """Simple helper function that returns a usable figure.

    Parameters
    ----------

    - outline : `bool` (default: True)

      If True, create an outline bounding box along with an axes
      marker for the scene.

    - browser : `bool` (default, True)

      If True, creates an IVTK scene with an embedded PipelineBrowser.
      If False, does not create it.
    """
    v = ivtk.viewer(browser)
    f = Figure(v.scene)
    if outline:
        o = Outline()
        f.add(o)
    v.scene.reset_zoom()
    return f


######################################################################
# Test functions.
######################################################################
def test_arrows(fig):
    a = Arrows([[-1,-1,-1],[1,0,0]], [[1,1,1],[0,1,0]], color=(1,0,0))
    fig.add(a)


def test_lines(fig):
    """Generates a pretty set of lines."""
    n_mer, n_long = 6, 11
    pi = numpy.pi
    dphi = pi/1000.0
    phi = numpy.arange(0.0, 2*pi + 0.5*dphi, dphi, 'd')
    mu = phi*n_mer
    x = numpy.cos(mu)*(1+numpy.cos(n_long*mu/n_mer)*0.5)
    y = numpy.sin(mu)*(1+numpy.cos(n_long*mu/n_mer)*0.5)
    z = numpy.sin(n_long*mu/n_mer)*0.5

    pts = numpy.zeros((len(mu), 3), 'd')
    pts[:,0], pts[:,1], pts[:,2] = x, y, z

    l = Line3(pts, radius=0.05, color=(0.0, 0.0, 0.8))

    fig.add(l)

def test_molecule(fig):
    """Generates and shows a Caffeine molecule."""
    o = [[30, 62, 19],[8, 21, 10]]
    n = [[31, 21, 11], [18, 42, 14], [55, 46, 17], [56, 25, 13]]
    c = [[5, 49, 15], [30, 50, 16], [42, 42, 15], [43, 29, 13], [18, 28, 12],
         [32, 6, 8], [63, 36, 15], [59, 60, 20]]
    h = [[23, 5, 7], [32, 0, 16], [37, 5, 0], [73, 36, 16], [69, 60, 20],
         [54, 62, 28], [57, 66, 12], [6, 59, 16], [1, 44, 22], [0, 49, 6]]

    oxygen = Spheres(o, radius=8, color=(1,0,0))
    nitrogen = Spheres(n, radius=10, color=(0,0,1))
    carbon = Spheres(c, radius=10, color=(0,1,0))
    hydrogen = Spheres(h, radius=5, color=(1,1,1))

    for i in oxygen, nitrogen, carbon, hydrogen:
        fig.add(i)

def test_trimesh(fig):
    """Test for simple triangle mesh."""
    pts = numpy.array([[0.0,0,0], [1.0,0.0,0.0], [1,1,0]], 'd')
    triangles = [[0, 1, 2]]
    t1 = TriMesh(triangles, pts)
    fig.add(t1)
    pts1 = pts.copy()
    pts1[:,2] = 1.0
    t2 = FancyTriMesh(triangles, pts1)
    fig.add(t2)

def test_surf_regular(fig, contour=1):
    """Test Surf on regularly spaced co-ordinates like MayaVi."""
    def f(x, y):
        return numpy.sin(x*y)/(x*y)

    x = numpy.arange(-7., 7.05, 0.1)
    y = numpy.arange(-5., 5.05, 0.05)
    if contour:
        s = SurfRegularC(x, y, f)
    else:
        s = SurfRegular(x, y, f)
    fig.add(s)


def test_simple_surf(fig):
    """Test Surf with a simple collection of points."""
    x, y = numpy.mgrid[0:3:1,0:3:1]
    z = x
    s = Surf(x, y, z, numpy.asarray(z, 'd'))
    fig.add(s)

def test_surf(fig):
    """A very pretty picture of spherical harmonics translated from
    the octaviz example."""
    pi = numpy.pi
    cos = numpy.cos
    sin = numpy.sin
    dphi, dtheta = pi/250.0, pi/250.0
    [phi,theta] = numpy.mgrid[0:pi+dphi*1.5:dphi,0:2*pi+dtheta*1.5:dtheta]
    m0 = 4; m1 = 3; m2 = 2; m3 = 3; m4 = 6; m5 = 2; m6 = 6; m7 = 4;
    r = sin(m0*phi)**m1 + cos(m2*phi)**m3 + sin(m4*theta)**m5 + cos(m6*theta)**m7
    x = r*sin(phi)*cos(theta)
    y = r*cos(phi)
    z = r*sin(phi)*sin(theta);

    s = Surf(x, y, z, z)
    fig.add(s)

def test_mesh_sphere(fig):
    """Create a simple sphere and test the mesh."""
    pi = numpy.pi
    cos = numpy.cos
    sin = numpy.sin
    du, dv = pi/20.0, pi/20.0
    phi, theta = numpy.mgrid[0.01:pi+du*1.5:du, 0:2*pi+dv*1.5:dv]
    r = 1.0
    x = r*sin(phi)*cos(theta)
    y = r*sin(phi)*sin(theta)
    z = r*cos(phi)
    s = FancyMesh(x, y, z, z, scalar_visibility=True)
    fig.add(s)

def test_mesh(fig):
    """Create a fancy looking mesh (example taken from octaviz)."""
    pi = numpy.pi
    cos = numpy.cos
    sin = numpy.sin
    du, dv = pi/20.0, pi/20.0
    u, v = numpy.mgrid[0.01:pi+du*1.5:du, 0:2*pi+dv*1.5:dv]
    x = (1- cos(u))*cos(u+2*pi/3) * cos(v + 2*pi/3.0)*0.5
    y = (1- cos(u))*cos(u+2*pi/3) * cos(v - 2*pi/3.0)*0.5
    z = cos(u-2*pi/3.)

    m = FancyMesh(x, y, z, z, scalar_visibility=True)
    fig.add(m)

def test_imshow(fig):
    """Show a large random array."""
    z_large = numpy.random.random((1024, 512))
    i = ImShow(z_large)
    fig.add(i)


def main():
    gui = GUI()
    # Create and open an application window.
    window = ivtk.IVTKWithCrustAndBrowser(size=(800,600))
    window.open()
    f = Figure(window.scene)

    # Create an outline.
    o = Outline()
    f.add(o)

    # Create some pretty pictures.
    #test_lines(f)
    test_surf(f)

    window.scene.reset_zoom()

    # Start the GUI event loop!
    gui.start_event_loop()


if __name__ == '__main__':
    main()