This file is indexed.

/usr/share/octave/packages/3.2/linear-algebra-2.1.0/ndcovlt.m is in octave-linear-algebra 2.1.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
## Copyright (C) 2010 VZLU Prague, a.s., Czech Republic
##
## Author: Jaroslav Hajek <highegg@gmail.com>
## 
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
## 
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
## 
## You should have received a copy of the GNU General Public License
## along with this program; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File} {@var{y} =} ndcovlt (@var{x}, @var{t1}, @var{t2}, @dots{})
## Computes an n-dimensional covariant linear transform of an n-d tensor, given a
## transformation matrix for each dimension. The number of columns of each transformation
## matrix must match the corresponding extent of @var{x}, and the number of rows determines
## the corresponding extent of @var{y}. For example:
## 
## @example
##   size (@var{x}, 2) == columns (@var{t2})
##   size (@var{y}, 2) == rows (@var{t2})
## @end example
##
## The element @code{@var{y}(i1, i2, @dots{})} is defined as a sum of
##
## @example
##   @var{x}(j1, j2, @dots{}) * @var{t1}(i1, j1) * @var{t2}(i2, j2) * @dots{}
## @end example
##
## over all j1, j2, @dots{}. For two dimensions, this reduces to
## @example
##   @var{y} = @var{t1} * @var{x} * @var{t2}.'
## @end example
## 
## [] passed as a transformation matrix is converted to identity matrix for
## the corresponding dimension.
##
## @end deftypefn

function y = ndcovlt (x, varargin)
  nd = max (ndims (x), nargin - 1);
  varargin = resize (varargin, 1, nd);

  # check dimensions
  for i = 1:nd
    ti = varargin{i};
    if (isnumeric (ti) && ndims (ti) == 2)
      [r, c] = size (ti);
      if (r + c == 0)
        varargin{i} = eye (size (x, i));
      elseif (c != size (x, i))
        error ("ndcovt: dimension mismatch for x-th transformation matrix");
      endif
    else
      error ("ndcovt: transformation matrices must be numeric 2d matrices");
    endif
  endfor

  if (isempty (x))
    szy = cellfun (@rows, varargin);
    y = zeros (szy);
    return
  endif

  ldp = [2:nd, 1];
  ## First transformation.
  y = ldtrans (x, varargin{1});

  ## Always shift one dimension.
  for i = 2:nd-1
    y = ldtrans (permute (y, ldp), varargin{i});
  endfor

  ## Permute to normal order now to save one permutation.
  if (nd > 2)
    y = ipermute (y, [nd-1:nd, 1:nd-2]);
  endif

  ## Now multiply from the right.
  szy = size (y);
  szy(end+1:nd-1) = 1;
  m = varargin{nd};
  szy(nd) = rows (m);
  y = reshape (y, [], size (y, nd));
  y = reshape (y * m.', szy);

endfunction

function y = ldtrans (x, m)
  sz = size (x);
  sz(1) = rows (m);
  y = reshape (m * x(:,:), sz);
endfunction