/usr/share/doc/octave-optim/optim-mini-howto-2.lyx is in octave-optim 1.0.17-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 | #LyX 1.1 created this file. For more info see http://www.lyx.org/
\lyxformat 218
\textclass article
\begin_preamble
\usepackage{dsfont}
% No date please
\date{}
\fontfamily{cmss}
\selectfont
\end_preamble
\language english
\inputencoding auto
\fontscheme helvet
\graphics default
\paperfontsize default
\spacing single
\papersize Default
\paperpackage a4
\use_geometry 0
\use_amsmath 0
\paperorientation portrait
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\quotes_times 2
\papercolumns 1
\papersides 1
\paperpagestyle default
\layout Standard
\latex latex
% This is for
\backslash
LyX
\layout Standard
\begin_inset FormulaMacro
\newcommand{\bfrac}[2]{\frac{#1 }{#2 }}
\end_inset
\layout Standard
\begin_inset FormulaMacro
\newcommand{\nth}{^{\textrm{th}}}
\end_inset
\layout Standard
\begin_inset FormulaMacro
\newcommand{\R}{R}
\end_inset
\layout Standard
\begin_inset FormulaMacro
\newcommand{\N}{N}
\end_inset
\layout Standard
\begin_inset FormulaMacro
\newcommand{\Z}{Z}
\end_inset
\layout Standard
\begin_inset FormulaMacro
\newcommand{\tra}{^{T}}
\end_inset
\layout Standard
\begin_inset FormulaMacro
\newcommand{\xx}{\mathbf{x}}
\end_inset
\layout Standard
\latex latex
% This is for
\backslash
LaTeX
\layout Standard
\latex latex
\backslash
fontfamily{cmss}
\backslash
selectfont
\layout Standard
\latex latex
\backslash
renewcommand{
\backslash
R}{{
\backslash
mathds{R}}}
\layout Standard
\latex latex
\backslash
renewcommand{
\backslash
N}{{
\backslash
mathds{N}}}
\layout Standard
\latex latex
\backslash
renewcommand{
\backslash
Z}{{
\backslash
mathds{Z}}}
\layout Standard
\latex latex
\backslash
renewcommand{
\backslash
tra}{^{
\backslash
top}}
\layout Standard
\latex latex
\backslash
renewcommand{
\backslash
bfrac}[2]{
\backslash
frac{{
\backslash
textstyle #1 }}{{
\backslash
textstyle #2 }}}
\layout Title
Mini-HOWTO on using Octave for Unconstrained Nonlinear Optimization
\begin_float footnote
\layout Standard
Author : Etienne Grossmann
\family typewriter
<etienne@isr.ist.utl.pt>
\family default
(soon replaced by
\begin_inset Quotes eld
\end_inset
Octave-Forge developers
\begin_inset Quotes erd
\end_inset
?).
This document is free documentation; you can redistribute it and/or modify
it under the terms of the GNU Free Documentation License as published by
the Free Software Foundation.
\newline
.\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
This is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.
\end_float
\layout Comment
Keywords: nonlinear optimization, octave, tutorial, Nelder-Mead, Conjugate
Gradient, Levenberg-Marquardt
\layout Standard
Nonlinear optimization problems are very common and when a solution cannot
be found analytically, one usually tries to find it numerically.
This document shows how to perform unconstrained nonlinear minimization
using the Octave language for numerical computation.
We assume to be so lucky as to have an initial guess from which to start
an iterative method, and so impatient as to avoid as much as possible going
into the details of the algorithm.
In the following examples, we consider multivariable problems, but the
single variable case is solved in exactly the same way.
\layout Standard
All the algorithms used below return numerical approximations of
\emph on
local minima
\emph default
of the optimized function.
In the following examples, we minimize a function with a single minimum
(Figure\SpecialChar ~
\begin_inset LatexCommand \ref{fig:function}
\end_inset
), which is relatively easily found.
In practice, success of optimization algorithms greatly depend on the optimized
function and on the starting point.
\layout Section*
\begin_inset ERT
collapsed true
\layout Standard
\latex latex
\backslash
fontfamily{cmss}
\backslash
selectfont
\end_inset
A simple example
\layout Standard
\begin_float fig
\layout Standard
\align center
\latex latex
\backslash
raisebox{6mm}{
\begin_inset Figure size 178 160
file figures/2D_slice-3.eps2
width 3 30
flags 11
\end_inset
}\SpecialChar ~
\begin_inset Figure size 297 193
file figures/optim_tutorial_slice.eps
width 3 50
flags 9
\end_inset
\layout Caption
\begin_inset LatexCommand \label{fig:function}
\end_inset
2D and 1D slices of the function that is minimized throughout this tutorial.
Although not obvious at first sight, it has a unique minimum.
\end_float
\layout Standard
We will use a call of the type
\layout LyX-Code
[x_best, best_value, niter] = minimize (func, x_init)
\layout Standard
to find the minimum of
\begin_inset Formula \[
\begin{array}{cccc}
f\, : & \left( x_{1},.x_{2},x_{3}\right) \in \R ^{3} & \longrightarrow & \left( x_{1}-1\right) ^{2}/9+\left( x_{3}-1\right) ^{2}/9+\left( x_{3}-1\right) ^{2}/9\\
& & & -\cos \left( x_{1}-1\right) -\cos \left( x_{2}-1\right) -\cos \left( x_{3}-1\right) .
\end{array}\]
\end_inset
\layout Standard
The following commands should find a local minimum of
\begin_inset Formula \( f() \)
\end_inset
, using the Nelder-Mead (aka
\begin_inset Quotes eld
\end_inset
downhill simplex
\begin_inset Quotes erd
\end_inset
) algorithm and starting from a randomly chosen point
\family typewriter
x0
\family default
\SpecialChar ~
:
\layout LyX-Code
function cost = foo (xx)
\layout LyX-Code
xx--;
\layout LyX-Code
cost = sum (-cos(xx)+xx.^2/9);
\layout LyX-Code
endfunction
\layout LyX-Code
x0 = [-1, 3, -2];
\layout LyX-Code
[x,v,n] = minimize ("foo", x0)
\layout Standard
The output should look like\SpecialChar ~
:
\layout LyX-Code
x =
\layout LyX-Code
1.00000 1.00000 1.00000
\layout LyX-Code
\layout LyX-Code
v = -3.0000
\layout LyX-Code
n = 248
\layout Standard
This means that a minimum has been found in
\begin_inset Formula \( \left( 1,1,1\right) \)
\end_inset
and that the value at that point is
\begin_inset Formula \( -3 \)
\end_inset
.
This is correct, since all the points of the form
\begin_inset Formula \( x_{1}=1+2i\pi ,\, x_{2}=1+2j\pi ,\, x_{3}=1+2k\pi \)
\end_inset
, for some
\begin_inset Formula \( i,j,k\in \N \)
\end_inset
, minimize
\begin_inset Formula \( f() \)
\end_inset
.
The number of function evaluations, 248, is also returned.
Note that this number depends on the starting point.
You will most likely obtain different numbers if you change
\family typewriter
x0
\family default
.
\layout Standard
The Nelder-Mead algorithm is quite robust, but unfortunately it is not very
efficient.
For high-dimensional problems, its execution time may become prohibitive.
\layout Section*
\begin_inset ERT
collapsed true
\layout Standard
\latex latex
\backslash
fontfamily{cmss}
\backslash
selectfont
\end_inset
Using the first differential
\layout Standard
Fortunately, when a function, like
\begin_inset Formula \( f() \)
\end_inset
above, is differentiable, more efficient optimization algorithms can be
used.
If
\family typewriter
minimize()
\family default
is given the differential of the optimized function, using the
\family typewriter
"df"
\family default
option, it will use a conjugate gradient method.
\layout LyX-Code
## Function returning partial derivatives
\layout LyX-Code
function dc = diffoo (x)
\layout LyX-Code
x = x(:)' - 1;
\layout LyX-Code
dc = sin (x) + 2*x/9;
\layout LyX-Code
endfunction
\layout LyX-Code
[x, v, n] = minimize ("foo", x0, "df", "diffoo")
\layout Standard
This produces the output\SpecialChar ~
:
\layout LyX-Code
x =
\layout LyX-Code
1.00000 1.00000 1.00000
\layout LyX-Code
v = -3
\layout LyX-Code
n =
\layout LyX-Code
108 6
\layout Standard
The same minimum has been found, but only 108 function evaluations were
needed, together with 6 evaluations of the differential.
Here,
\family typewriter
diffoo()
\family default
takes the same argument as
\family typewriter
foo()
\family default
and returns the partial derivatives of
\begin_inset Formula \( f() \)
\end_inset
with respect to the corresponding variables.
It doesn't matter if it returns a row or column vector or a matrix, as
long as the
\begin_inset Formula \( i\nth \)
\end_inset
element of
\family typewriter
diffoo(x)
\family default
is the partial derivative of
\begin_inset Formula \( f() \)
\end_inset
with respect to
\begin_inset Formula \( x_{i} \)
\end_inset
.
\layout Section*
\begin_inset ERT
collapsed true
\layout Standard
\latex latex
\backslash
fontfamily{cmss}
\backslash
selectfont
\end_inset
Using numerical approximations of the first differential
\layout Standard
Sometimes, the minimized function is differentiable, but actually writing
down its differential is more work than one would like.
Numerical differentiation offers a solution which is less efficient in
terms of computation cost, but easy to implement.
The
\family typewriter
"ndiff"
\family default
option of
\family typewriter
minimize()
\family default
uses numerical differentiation to execute exactly the same algorithm as
in the previous example.
However, because numerical approximation of the differentia is used, the
outpud may differ slightly\SpecialChar ~
:
\layout LyX-Code
[x, v, n] = minimize ("foo", x0, "ndiff")
\layout Standard
wich yields\SpecialChar ~
:
\layout LyX-Code
x =
\layout LyX-Code
1.00000 1.00000 1.00000
\layout LyX-Code
v = -3
\layout LyX-Code
n =
\layout LyX-Code
78 6
\layout Standard
Note that each time the differential is numerically approximated,
\family typewriter
foo()
\family default
is called 6 times (twice per input element), so that
\family typewriter
foo()
\family default
is evaluated a total of (78+6*6=) 114 times in this example.
\layout Section*
\begin_inset ERT
collapsed true
\layout Standard
\latex latex
\backslash
fontfamily{cmss}
\backslash
selectfont
\end_inset
Using the first and second differentials
\layout Standard
When the function is twice differentiable and one knows how to compute its
first and second differentials, still more efficient algorithms can be
used (in our case, a variant of Levenberg-Marquardt).
The option
\family typewriter
"d2f"
\family default
allows to specify a function that returns the value of the function, the
first and second differentials of the minimized function.
Entering the commands\SpecialChar ~
:
\layout LyX-Code
function [c, dc, d2c] = d2foo (x)
\layout LyX-Code
c = foo(x);
\layout LyX-Code
dc = diffoo(x);
\layout LyX-Code
d2c = diag (cos (x(:)-1) + 2/9);
\layout LyX-Code
end
\layout LyX-Code
[x,v,n] = minimize ("foo", x0, "d2f", "d2foo")
\layout Standard
produces the output\SpecialChar ~
:
\layout LyX-Code
x =
\layout LyX-Code
1.0000 1.0000 1.0000
\layout LyX-Code
v = -3
\layout LyX-Code
n =
\layout LyX-Code
34 5
\layout Standard
This time, 34 function evaluations, and 5 evaluations of
\family typewriter
d2foo()
\family default
were needed.
\layout Section*
\begin_inset ERT
collapsed true
\layout Standard
\latex latex
\backslash
fontfamily{cmss}
\backslash
selectfont
\end_inset
Summary
\layout Standard
We have just seen the most basic ways of solving nonlinear unconstrained
optimization problems.
The online help system of Octave (try e.g.
\begin_inset Quotes eld
\end_inset
\family typewriter
help minimize
\family default
\begin_inset Quotes erd
\end_inset
) will yield information on other issues, such as
\emph on
passing extra arguments
\emph default
to the minimized function,
\emph on
controling the termination
\emph default
of the optimization process, choosing the algorithm etc.
\layout LyX-Code
\the_end
|