/usr/lib/openturns/examples/t_MergeRandomAndConstantInput.cxx is in openturns-examples 0.15-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | // -*- C++ -*-
/**
* @file t_MergeRandomAndConstantInput.cxx
* @brief The test file of class NumericalMathFunction for standard methods
*
* (C) Copyright 2005-2011 EDF-EADS-Phimeca
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License.
*
* This library is distributed in the hope that it will be useful
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* @author: $LastChangedBy: schueller $
* @date: $LastChangedDate: 2011-05-24 19:30:41 +0200 (Tue, 24 May 2011) $
* Id: $Id: t_MergeRandomAndConstantInput.cxx 1910 2011-05-24 17:30:41Z schueller $
*/
#include <iostream>
#include <iomanip>
#include <sstream>
#include <exception>
#include "OT.hxx"
#include "OTtestcode.hxx"
#include "OStream.hxx"
#include "NumericalMathFunction.hxx"
#include "IdentityMatrix.hxx"
#include "NumericalPoint.hxx"
#include "Matrix.hxx"
#include "Normal.hxx"
#include "LinearNumericalMathEvaluationImplementation.hxx"
#include "ConstantNumericalMathGradientImplementation.hxx"
#include "ConstantNumericalMathHessianImplementation.hxx"
using namespace OT;
using namespace OT::Test;
using namespace OT::Base::Common;
using namespace OT::Base::Type;
using namespace OT::Base::Func;
using namespace OT::Uncertainty::Distribution;
int main(int argc, char *argv[])
{
TESTPREAMBLE;
OStream fullprint(std::cout);
try {
/** External code. This code has an input vector of dimension 4, namely (p0, p1, p2, p3)'. */
NumericalMathFunction externalCode("poutre");
UnsignedLong dim(externalCode.getInputDimension());
/** The external code will be connected to 2 independent random variables X0 and X1 and one deterministic variable X2 with the following scheme:
X2->p0
X0->p1
X1->p2
X0->p3
It means that (p0, p1, p2, p3)' = A.(X0, X1)' + b with:
A = [0 0] b = [X2]
[1 0] [ 0]
[0 1] [ 0]
[1 0] [ 0]
Here we build the linear function x -> A.x + b
*/
UnsignedLong stochasticDimension(2);
// UnsignedLong deterministicDimension(1);
Matrix A(dim, stochasticDimension);
A(1, 0) = 1;
A(2, 1) = 1;
A(3, 0) = 1;
NumericalPoint b(dim, 0);
NumericalScalar X2(50.0);
b[0] = X2;
NumericalMathFunction connect;
NumericalPoint zero(stochasticDimension, 0);
/** A LinearNumericalMathFunction will arrive soon... */
connect.setEvaluationImplementation(new LinearNumericalMathEvaluationImplementation(zero, b, A.transpose()));
connect.setGradientImplementation(new ConstantNumericalMathGradientImplementation(A.transpose()));
connect.setHessianImplementation(new ConstantNumericalMathHessianImplementation(SymmetricTensor(stochasticDimension, dim)));
/** We are now ready to build the resulting code externalCode(connect()) */
NumericalMathFunction finalCode(externalCode, connect);
/** Check if it worked */
NumericalPoint x(connect.getInputDimension());
x[0] = 5;
x[1] = 10;
fullprint << "finalCode(x)=" << finalCode(x) << std::endl;
NumericalPoint xRef(dim);
xRef[0] = X2;
xRef[1] = x[0];
xRef[2] = x[1];
xRef[3] = x[0];
fullprint << "ref=" << externalCode(xRef) << std::endl;
}
catch (TestFailed & ex) {
std::cerr << ex << std::endl;
return ExitCode::Error;
}
return ExitCode::Success;
}
|