/usr/share/pdb2pqr/pdb2pka/ligand_topology.py is in pdb2pqr 1.7-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 | #
# $Id: ligand_topology.py 599 2008-06-13 14:15:38Z yhuang01 $
# PC 2005/09/23
# Get ligand topologies
#
try:
import Numeric
except:
import numpy as Numeric
from sets import Set
from ligandclean.trial_templates import *
from types import *
def length(vector):
# This function returns the length of vector
import math
sum=0.0
for value in vector:
sum=sum+math.pow(value,2)
return math.sqrt(sum)
class get_ligand_topology:
### PC
#
# here we need to check if we have MOL2 file, then guess_atom_types
# are not necessary
#
def __init__(self,lines,MOL2FLAG):
#
# Given the atoms, this routine tells you everything you want to know about
# the ligand
#
#
# Store the atoms
#
if MOL2FLAG == False:
self.atoms={}
import string
for line in lines:
split=string.split(line)
name=split[0]
self.atoms[name]={'coords':Numeric.array([float(split[1]),float(split[2]),float(split[3])])}
self.atoms[name]['bonds']=[]
#
# Get the likely types from names
#
trivial_types=['N','O','C','H']
for atom in self.atoms.keys():
if atom[0] in trivial_types:
if atom[0]!='H': # Get rid of all the hydrogens
self.atoms[atom]['type']=atom[0]
self.atoms[atom]['sybylType']='Unknown'
#
# Get the bonds
# First approximation: Anything closer than 2.0 A is bonded
#
self.dists={}
for atom1 in self.atoms.keys():
self.dists[atom1]={}
for atom2 in self.atoms.keys():
if atom1==atom2:
continue
#
# Calculate the distance
#
self.dists[atom1][atom2]=length(self.atoms[atom1]['coords']-self.atoms[atom2]['coords'])
if self.dists[atom1][atom2]<2.0:
self.atoms[atom1]['bonds'].append(atom2)
#
# Count number of bonds to non-H atoms and guess atom type
#
bond_lengths={'C-C':[1.5,0.2]}
#
# Get the torsion angles
#
atoms=self.atoms.keys()
atoms.sort()
for atom in atoms:
self.atoms[atom]['torsions']=self.get_torsions(atom)
#
# Produce the definition lines
#
self.lines=self.create_deflines()
#
# Now we try to guess the atom types
#
self.guess_atom_types()
else:
#
# We have a mol2 file
#
LIG = lines
self.atoms={}
for line in lines:
name = line.name
# self.atoms[name] = name
self.atoms[name] = {'coords': Numeric.array([float(line.x),float(line.y),float(line.z)])}
self.atoms[name]['sybylType'] = line.sybylType
#
# we don't have this information when coming from PDB!
self.atoms[name]['lBondedAtoms'] = line.lBondedAtoms
self.atoms[name]['lBonds'] = line.lBonds
###PC
# one bond is lost!
self.atoms[name]['bonds']=[]
for BBonds in line.lBondedAtoms: #line.lBonds:
self.atoms[name]['bonds'].append(BBonds.name)
###PC
# save the atomname & id
self.atoms[name]['atomname'] = name
self.atoms[name]['serial'] = line.serial
#
# USEFUL information
# bonded heavy atoms
self.atoms[name]['nbhvy'] = len([x for x in self.atoms[name]['lBondedAtoms'] if x.sybylType != "H"])
# number of bonds (including hydrogens)
self.atoms[name]['nbds'] = len(self.atoms[name]['lBonds'])
# number of bonded hydrogens
self.atoms[name]['nbhyd'] = self.atoms[name]['nbds']- self.atoms[name]['nbhvy']
# element
self.atoms[name]['ele'] = self.atoms[name]['sybylType'].split('.')[0]
#
# Get the torsion angles
#
atoms=self.atoms.keys()
atoms.sort()
for atom in atoms:
self.atoms[atom]['torsions']=self.get_torsions(atom)
self.lines=self.create_deflines()
return
#
# -------
#
def guess_atom_types(self):
#
# Phase I
# Loop over all atoms and count number of bonds
# + determine their likely order (e.g. single, double, or triple)
#
ambs={}
atoms=self.atoms.keys()
for atom_name in atoms:
bonds=self.atoms[atom_name]['bonds']
atype=self.atoms[atom_name]['type']
numbonds=0
aromatic=None
for bonded_atom in bonds:
#
# Get the bond order from the distance
#
bond_order=self.get_bond_order(atom_name,bonded_atom)
if bond_order<4:
numbonds=numbonds+bond_order
else:
aromatic=1
self.atoms[atom_name]['sum_bondorder']=numbonds
self.atoms[atom_name]['aromatic']=aromatic
#
# ok, now we have info on all atoms.
# Solve ambiguities starting with the simplest case
#
valences={'C':4,'O':2,'N':3}
for atom in self.atoms:
print atom, self.atoms[atom]
#
# ok, now it gets hairy
#
print
print 'Guessing sybyl atom types'
for atom in self.atoms.keys():
stype=None
at=self.atoms[atom]
#
# Get the precalculated characteristics
#
number_of_bonds=len(at['bonds'])
sum_of_bondorder=at['sum_bondorder']
if at['type']=='C':
#
# Carbon
#
#
# Table or sum of bond-order, number of atoms bound to
#
C_types={5:{3:'C.2'}} # Carboxylic acid typically
C_types[4]={4:'C.3',3:'C.2',2:'C.2'} # sum of bondorder is 4
C_types[3]={3:'C.3',2:'C.2'}
C_types[2]={2:'C.3',1:'C.2'}
C_types[1]={1:'C.3'}
#
# Get the bond order
#
stype=C_types[sum_of_bondorder][number_of_bonds]
elif at['type']=='O':
#
# OXYGEN
#
# Table or sum of bond-order, number of atoms bound to
#
O_types={2:{2:'O.3',1:'O.2'},1:{1:'O.3'}}
stype=O_types[sum_of_bondorder][number_of_bonds]
else:
pass
self.atoms[atom]['sybylType']=stype
#print atom,stype
#
# Do some postchecks
# - right now only for Carboxylic acids
#
for atom in self.atoms.keys():
at=self.atoms[atom]
if at['sybylType']=='C.2':
#
# See if we have two oxygens bound + an extra bond
#
if len(at['bonds'])==3:
Os=[]
for bound_atom_name in at['bonds']:
bound_atom=self.atoms[bound_atom_name]
if bound_atom['sybylType']=='O.2':
Os.append(bound_atom_name)
#
# If we had two O.2s, then change their hybridisation to O.3
#
if len(Os)==2:
for O in Os:
self.atoms[O]['sybylType']='O.3'
#
# All Done
#
atoms=self.atoms.keys()
atoms.sort()
print '\nFinal Sybyl type results'
for atom in atoms:
print atom,self.atoms[atom]['sybylType']
return
#
# --------
#
def get_bond_order(self,atom1,atom2):
#
# Get the bond order
#
# Bond lengths from
# http://www.chem.swin.edu.au/modules/mod2/bondlen.html
# We should get a better reference
#
# Returns:
# 1: single bond, 2: double bond, 3: triple bond, 4: aromatic
#
#
at1=self.atoms[atom1]
at2=self.atoms[atom2]
bond_props={'C-C':[1.54,1],'C=C':[1.34,2],'CtC':[1.20,3],'CaC':[1.40,4],
'C-O':[1.43,1],'C=O':[1.21,2],
'C-N':[1.47,1],'C=N':[1.25,2],'CtN':[1.16,3],'CaN':[1.34,4],
'NaN':[1.35,4]}
dist=length(at1['coords']-at2['coords'])
tps=[at1['type'],at2['type']]
tps.sort() # To agree with dictionary layout
best_fit=2.00
best_type=None
for bond in bond_props.keys():
if bond[0]==tps[0] and bond[-1]==tps[1]:
if abs(dist-bond_props[bond][0])<best_fit:
best_fit=abs(dist-bond_props[bond][0])
best_type=bond
#
# convert to bond order
#
return bond_props[best_type][1]
#
# ----
#
def get_torsions(self,start_atom):
#
# Get the torsion angles that start with this atom
#
#print '---------------------'
#print 'Starting atom',start_atom
possible_torsions=[]
for bonded1 in self.atoms[start_atom]['bonds']:
for bonded2 in self.atoms[bonded1]['bonds']:
if bonded2==start_atom:
continue
for end_atom in self.atoms[bonded2]['bonds']:
if end_atom==bonded1:
continue
#
# Add the torsion
#
possible_torsions.append([start_atom,bonded1,bonded2,end_atom])
#
# Filter the torsions
#
#
print 'Jens has to write the stuff for filtering torsions..\n'
return possible_torsions
#
# ---------
#
def create_deflines(self):
#
# Make the lines for the pdb2pqr definition
#
self.numbers={}
atoms=self.atoms.keys()
atoms.sort()
number=0
for atom in atoms:
number=number+1
self.numbers[atom]=number
#
# Produce the lines
#
lines=[]
for atom in atoms:
lines.append('%s %.2f %.2f %.2f' %(atom,self.atoms[atom]['coords'][0],
self.atoms[atom]['coords'][1],
self.atoms[atom]['coords'][2]))
#
# Bonds
#
bonds=''
for atom in atoms:
for bond in self.atoms[atom]['bonds']:
start_num=self.numbers[atom]
end_num=self.numbers[bond]
#
# Only write bonds one way (small number -> big number)
#
if end_num>start_num:
bonds=bonds+'%d %d ' %(start_num,end_num)
lines.append(bonds)
#
# Torsions
#
tors=''
written=0
for atom in atoms:
for torsion in self.atoms[atom]['torsions']:
atom1=self.numbers[torsion[0]]
atom2=self.numbers[torsion[1]]
atom3=self.numbers[torsion[2]]
atom4=self.numbers[torsion[3]]
if atom1<atom2 and atom2<atom3 and atom4<atom4:
tors=tors+'%d %d %d %d ' %(atom1,atom2,atom3,atom4)
written=written+1
lines.append('%d %s' %(written,tors))
return lines
#
# ---------
#
def ring_detection(self,start_atom,already_visited=[],level=0):
if start_atom in already_visited:
if start_atom==already_visited[-2]:
return []
if already_visited[0]!=start_atom:
return []
return already_visited+[start_atom]
#
return_lists=[]
for bonded_atom in self.atoms[start_atom]['bonds']:
this_list=already_visited[:]+[start_atom]
this_list=self.ring_detection(bonded_atom,this_list,level+1)
if this_list!=[]:# and len(this_list)>1:
return_lists.append(this_list)
return return_lists
#
# ------
#
def get_items(self,item):
#
# Reformat the lists of lists of lists of ... that we get from the ring detection
#
if type(item) is ListType:
real_list=[]
for sub_item in item:
if not type(sub_item) is ListType:
real_list.append(sub_item)
else:
self.get_items(sub_item)
#
# If we got something in the real_list then add it to the biglist
#
if real_list!=[]:
self.biglist.append(real_list)
return
else:
raise 'this should not happen'
#
# -----
#
def assignRingAttribute(self,ring,atoms,current_atom):
if self.atoms[current_atom]['in_ring'] != 0:
self.atoms[current_atom]['in_ring'] += +1
else:
self.atoms[current_atom]['in_ring'] = 1
return
#
# ------
#
def find_titratable_groups(self):
#
# Look for simple substructures that would be titratable groups in the ligand
#
atoms=self.atoms.keys()
#
# ring detection (including deleting redundancies & sorting issues)
ring_list = []
tmp=[]
for atom in self.atoms.keys():
temp_ring_list = []
tmp.append(self.ring_detection(atom))
#
# Get just a single list of lists
self.biglist=[]
self.get_items(tmp)
# bigList = self.biglist
ring_list=self.biglist
sorted_ring_list = []
for rring in ring_list:
rring = rring[:-1]
rring.sort()
sorted_ring_list.append(rring)
sorted_ring_list.sort()
#
# delete ring redundancies - only if ring present
if len(sorted_ring_list) > 0:
last = (sorted_ring_list)[-1]
for i in range(len(sorted_ring_list)-2,-1,-1):
if last == sorted_ring_list[i]:
del sorted_ring_list[i]
else:
last = sorted_ring_list[i]
print "# overall rings (including potentially fused rings) :", len(sorted_ring_list)
stop ## PC 03.01.06
#
#
# assigning ring attribute for every ring atom
for at in self.atoms.keys():
self.atoms[at]['in_ring'] = 0
for rring in sorted_ring_list:
for current_atom in rring:
self.assignRingAttribute(rring,atoms,current_atom)
# new attribute for each ring atom: appending the complete ring
# atom names to which the atom belongs
for atom in atoms:
at = self.atoms[atom]
at['ring_list'] = []
non_fused_counter = 0
for rring in sorted_ring_list:
already_detected_false = False
for atom in rring:
at = self.atoms[atom]
if already_detected_false == False and at['in_ring'] == 1:
non_fused_counter += 1
already_detected_false = True
at = self.atoms[atom]
if at['ring_list'] == []:
at['ring_list'] = [rring]
elif rring not in at['ring_list']:
at['ring_list'].append(rring)
print "# non-fused rings :", non_fused_counter
def matched_atom_types(atom2match,t):
match_list=[]
#
# match ligand atom type with atom type from template
for at in t.keys():
if t[at]['sybylType'] == self.atoms[atom2match]['sybylType']:
match_list.append(at)
if len(match_list) != 0:
return match_list,t[at]['sybyl_neighbours']
if len(match_list) == 0:
return None,None
def match(t,l,already_visited=[],type_matches=[]):
for counter in range(len(atoms)):
at_lig = atoms[counter]
already_visited.append(at_lig)
# 1st matching: based on atom types
matched_atom_in_template, nbs_in_template = matched_atom_types(at_lig,t)
if matched_atom_in_template != None:
for entries in matched_atom_in_template:
ligand_list = []
# Create sybyl_neighbors on-the-fly for ligand
for sybyl_bonded_at in self.atoms[at_lig]['lBondedAtoms']:
ligand_list.append(sybyl_bonded_at.sybylType)
ligand_set = Set(ligand_list)
template_set = Set(nbs_in_template)
# Now match simultaneously atom_type and neighbouring atom_types for ligand AND template
if len(ligand_set.difference(template_set)) == 0 and len(ligand_list) == len(nbs_in_template):
for entry in matched_atom_in_template:
print "%3d"%(counter)," Ligand %4s %5s %28s " \
%(at_lig,self.atoms[at_lig]['sybylType'],ligand_list),\
"template %s %s %s %s" \
%(matched_atom_in_template,t[entry]['sybylType'],nbs_in_template,t[entry]['neighbours'])
for neighboured_template_atoms in t[entry]['neighbours']:
print neighboured_template_atoms,t[neighboured_template_atoms]['sybylType'],t[neighboured_template_atoms]['sybyl_neighbours']
for neighboured_ligand_atoms in self.atoms[at_lig]['lBondedAtoms']:
print neighboured_ligand_atoms.name, neighboured_ligand_atoms.sybylType,neighboured_ligand_atoms.lBondedAtoms
stop
counter += 1
def matched_atom_types2(atom2match,t,stored_nbs_of_atom2match=[],already_visited=[],matching_template={}):
#
# match ligand atom type with atom type from template
if atom2match == "F14":
print "YYY_atom2match_YYY", atom2match
# print "alrvis",len(already_visited),already_visited
if matching_template == {}:
matching_template['MatchedFragments'] = {}
if len(stored_nbs_of_atom2match) != 0 and stored_nbs_of_atom2match[-1] == atom2match:
print "bis zum erbrechen schreien!!!!", self.atoms[atom2match]['bonds']
for e in self.atoms[atom2match]['bonds']:
atom2match = e
for at in t.keys():
# TODO:matching ALL atom types in template => gives a match_list
if t[at]['sybylType'] == self.atoms[atom2match]['sybylType'] \
and atom2match not in already_visited:
already_visited.append(self.atoms[atom2match]['atomname'])
Lig_nbs_SybylList = []
Lig_nbs_AtomnameList = []
# Create sybyl_neighbors on-the-fly for ligand
for att in self.atoms[atom2match]['lBondedAtoms']:
Lig_nbs_SybylList.append(att.sybylType)
Lig_nbs_AtomnameList.append(att.name)
ligand_set = Set(Lig_nbs_SybylList)
template_set = Set(t[at]['sybyl_neighbours'])
diff = ligand_set.difference(template_set)
if len(diff) == 0:
stored_nbs_of_atom2match = Lig_nbs_AtomnameList
matching_template['MatchedFragments'][atom2match] = {}
matching_template['MatchedFragments'][atom2match]['sybyl_neighbours'] = Lig_nbs_SybylList
# go through all bonded atoms
if len(stored_nbs_of_atom2match) != 0:
for bb in stored_nbs_of_atom2match:
if bb not in already_visited:
already_visited.append(bb)
matching_template['MatchedFragments'][bb] = {}
bb_list = []
for bat in self.atoms[bb]['lBondedAtoms']:
bb_list.append(bat.sybylType)
matching_template['MatchedFragments'][bb]['sybyl_neighbours'] = bb_list
#
# here we call the routine by itself
matched_atom_types2(bb,t,stored_nbs_of_atom2match)
else: # NO MATCH
for nbat in self.atoms[atom2match]['bonds']:
if nbat in already_visited:
start_id = 1
for id in range(len(self.atoms[atom2match]['bonds'])-1):
next_nbat_id = id+1
next_nbat_at = self.atoms[atom2match]['bonds'][next_nbat_id]
if next_nbat_at not in already_visited:
#not 100% sure, if if append the correct atom
# already_visited.append(next_nbat_at)
already_visited.append(self.atoms[atom2match]['bonds'][next_nbat_id])
matched_atom_types2(self.atoms[atom2match]['bonds'][next_nbat_id],t)
else:
pass
else:
matched_atom_types2(nbat,t)
else:
print "sybylType s don't match", atom2match
# 2nd loop to go over to the neighboured atoms
for at in t.keys():
if atom2match in already_visited:
for nbat in self.atoms[atom2match]['bonds']:
if nbat in already_visited:
#
# TODO: Do not go beyond the last list member
start_id = 1
for id in range(len(self.atoms[atom2match]['bonds'])-1):
next_nbat_id = id+1
next_nbat_at = self.atoms[atom2match]['bonds'][next_nbat_id]
if next_nbat_at not in already_visited:
already_visited.append(next_nbat_at)
matched_atom_types2(self.atoms[atom2match]['bonds'][next_nbat_id],t)
else:
pass
else:
matched_atom_types2(nbat,t)
print "\t\t\tlen alrvis %3d" % (len(already_visited))
def createsybyllistonthefly(lig_atom):
# look in matched_atom_types2 - line 656
sybyllist = []
for att in self.atoms[lig_atom]['lBondedAtoms']:
sybyllist.append(att.sybylType)
return sybyllist
def gothroughallnbsofmatchlistatom(stored_nbs_of_atom2match,t,already_visited,hit_list):
putative_next_a2m_list = []
for ent_lig in stored_nbs_of_atom2match:
matchlist = []
if ent_lig not in already_visited:
already_visited.append(ent_lig)
# look for matching neighbours
for at in t.keys():
if t[at]['sybylType'] == self.atoms[ent_lig]['sybylType'] and ent_lig not in matchlist:
matchlist.append(at)
for matches in matchlist:
if len(Set(t[matches]['sybyl_neighbours']).difference(Set(createsybyllistonthefly(ent_lig)))) == 0:
if ent_lig not in hit_list:
hit_list.append(ent_lig)
for putative_next_atom2match in self.atoms[ent_lig]['bonds']:
if putative_next_atom2match not in putative_next_a2m_list:
putative_next_a2m_list.append(putative_next_atom2match)
else:
print "sybyl neighbours don't match"
else:
# what's here?
pass
# delete the stored nbs
stored_nbs_of_atom2match = []
# next atom2match???
return already_visited,stored_nbs_of_atom2match,putative_next_a2m_list,hit_list
def matchatomtypeintemplateandgetliglist(atom2match,t,stored_nbs_of_atom2match=[],been_here_flag=False,\
already_visited=[],hit_list=[]):
print atom2match,"hit_list",hit_list,been_here_flag
putative_next_a2m_list = []
# we don't want to miss the nbs of a matched atom (see [1])
if atom2match in stored_nbs_of_atom2match:
already_visited,stored_nbs_of_atom2match,putative_next_a2m_list,hit_list = \
gothroughallnbsofmatchlistatom(stored_nbs_of_atom2match,t,already_visited,hit_list)
# does this really work? - to which position of the routine do we go now?
if been_here_flag == True:
print "it's true...", putative_next_a2m_list
for next_at in putative_next_a2m_list:
print "TRUE (been_here_flag)", putative_next_a2m_list
matchatomtypeintemplateandgetliglist(next_at,t,been_here_flag=True)
matchlist = []
for at in t.keys():
if t[at]['sybylType'] == self.atoms[atom2match]['sybylType'] and atom2match not in already_visited:
already_visited.append(atom2match)
print "we found a match for %4s " %(atom2match)
matchlist.append(at)
# look for sybylnbs of all stored entries in matchlist
for entries in matchlist:
# TODO: Set deletes redundancies in 'sybyl_neighbours': AVOID THIS!
if len(Set(t[entries]['sybyl_neighbours']).difference(Set(createsybyllistonthefly(atom2match)))) == 0:
hit_list.append(atom2match)
stored_nbs_of_atom2match = self.atoms[atom2match]['bonds']
print "nbs %s of hit %s" %(stored_nbs_of_atom2match,atom2match)
for nbs in stored_nbs_of_atom2match:
# call itself!
#
matchatomtypeintemplateandgetliglist(nbs,t,stored_nbs_of_atom2match)
# when passing stored_nbs_of_atom2match - always control atom2match with list entries! [1]
# (we have to do this at the beginning of our routine)
# ELSE case:
def match2(t,l,start_atom,already_visited=[],type_matches=[]):
matchatomtypeintemplateandgetliglist(start_atom,t)
# matched_atom_types2(start_atom,t)
for current_template in templates.keys():
match2(templates[current_template],atoms,start_atom=atoms[4]) # start_atom should be 0
# match(templates[current_template],atoms)
|