This file is indexed.

/usr/lib/perl5/PDL/FFT.pm is in pdl 1:2.4.7+dfsg-2ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
#
# GENERATED WITH PDL::PP! Don't modify!
#
package PDL::FFT;

@EXPORT_OK  = qw( PDL::PP _fft PDL::PP _ifft  fft ifft fftnd ifftnd fftconvolve realfft realifft kernctr PDL::PP convmath PDL::PP cmul PDL::PP cdiv );
%EXPORT_TAGS = (Func=>[@EXPORT_OK]);

use PDL::Core;
use PDL::Exporter;
use DynaLoader;



   
   @ISA    = ( 'PDL::Exporter','DynaLoader' );
   push @PDL::Core::PP, __PACKAGE__;
   bootstrap PDL::FFT ;




=head1 NAME

PDL::FFT - FFTs for PDL

=head1 DESCRIPTION

FFTs for PDL.  These work for arrays of any dimension, although ones
with small prime factors are likely to be the quickest.

For historical reasons, these routines work in-place and do not recognize
the in-place flag.  That should be fixed.

=head1 SYNOPSIS

        use PDL::FFT qw/:Func/;

	fft($real, $imag);
	ifft($real, $imag);
	realfft($real);
	realifft($real);

	fftnd($real,$imag);
	ifftnd($real,$imag);

	$kernel = kernctr($image,$smallk);
	fftconvolve($image,$kernel);

=head1 DATA TYPES

The underlying C library upon which this module is based performs FFTs
on both single precision and double precision floating point piddles.
Performing FFTs on integer data types is not reliable.  Consider the
following FFT on piddles of type 'double':

	$r = pdl(0,1,0,1);
	$i = zeroes($r);
	fft($r,$i);
	print $r,$i;
	[2 0 -2 0] [0 0 0 0]

But if $r and $i are unsigned short integers (ushorts):

	$r = pdl(ushort,0,1,0,1);
	$i = zeroes($r);
	fft($r,$i);
	print $r,$i;
	[2 0 65534 0] [0 0 0 0]

This used to occur because L<PDL::PP|PDL::PP> converts the ushort
piddles to floats or doubles, performs the FFT on them, and then
converts them back to ushort, causing the overflow where the amplitude
of the frequency should be -2.

Therefore, if you pass in a piddle of integer datatype (byte, short,
ushort, long) to any of the routines in PDL::FFT, your data will be
promoted to a double-precision piddle.  If you pass in a float, the
single-precision FFT will be performed.

=head1 FREQUENCIES

For even-sized input arrays, the frequencies are packed like normal
for FFTs (where N is the size of the array and D is the physical step
size between elements):

 0, 1/ND, 2/ND, ..., (N/2-1)/ND, 1/2D, -(N/2-1)/ND, ..., -1/ND.

which can easily be obtained (taking the Nyquist frequency to be
positive) using

C<< $kx = $real->xlinvals(-($N/2-1)/$N/$D,1/2/$D)->rotate(-($N/2 -1)); >>

For odd-sized input arrays the Nyquist frequency is not directly
acessible, and the frequencies are

 0, 1/ND, 2/ND, ..., (N/2-0.5)/ND, -(N/2-0.5)/ND, ..., -1/ND.

which can easily be obtained using

C<< $kx = $real->xlinvals(-($N/2-0.5)/$N/$D,($N/2-0.5)/$N/$D)->rotate(-($N-1)/2); >>


=head1 ALTERNATIVE FFT PACKAGES

Various other modules - such as 
L<PDL::FFTW|PDL::FFTW> and L<PDL::Slatec|PDL::Slatec> - 
contain FFT routines.
However, unlike PDL::FFT, these modules are optional,
and so may not be installed.

=cut







=head1 FUNCTIONS



=cut






*_fft = \&PDL::_fft;




*_ifft = \&PDL::_ifft;



use Carp;
use PDL::Core qw/:Func/;
use PDL::Basic qw/:Func/;
use PDL::Types;
use PDL::ImageND qw/kernctr/; # moved to ImageND since FFTW uses it too

END {
  # tidying up required after using fftn
  print "Freeing FFT space\n" if $PDL::verbose;
  fft_free();
}

sub todecimal {
    my ($arg) = @_;
    $arg = $arg->double if (($arg->get_datatype != $PDL_F) && 
			   ($arg->get_datatype != $PDL_D));
    $_[0] = $arg;
1;}

=head2 fft()

=for ref

Complex FFT of the "real" and "imag" arrays [inplace].

=for usage

fft($real,$imag);

=cut

*fft = \&PDL::fft;

sub PDL::fft {
	# Convert the first argument to decimal and check for trouble.
	eval {	todecimal($_[0]);	};
	if ($@) {
		$@ =~ s/ at .*//s;
		barf("Error in FFT with first argument: $@");
	}
	# Convert the second argument to decimal and check for trouble.
	eval {	todecimal($_[1]);	};
	if ($@) {
		$@ =~ s/ at .*//s;
		my $message = "Error in FFT with second argument: $@";
		$message .= '. Did you forget to supply the second (imaginary) piddle?'
			if ($message =~ /undefined value/);
		barf($message);
	}
	_fft($_[0],$_[1]);
}


=head2 ifft()

=for ref

Complex inverse FFT of the "real" and "imag" arrays [inplace].

=for usage

ifft($real,$imag);

=cut

*ifft = \&PDL::ifft;

sub PDL::ifft {
	# Convert the first argument to decimal and check for trouble.
	eval {	todecimal($_[0]);	};
	if ($@) {
		$@ =~ s/ at .*//s;
		barf("Error in FFT with first argument: $@");
	}
	# Convert the second argument to decimal and check for trouble.
	eval {	todecimal($_[1]);	};
	if ($@) {
		$@ =~ s/ at .*//s;
		my $message = "Error in FFT with second argument: $@";
		$message .= '. Did you forget to supply the second (imaginary) piddle?'
			if ($message =~ /undefined value/);
		barf($message);
	}
	_ifft($_[0],$_[1]);
}

=head2 realfft()

=for ref

One-dimensional FFT of real function [inplace].

The real part of the transform ends up in the first half of the array
and the imaginary part of the transform ends up in the second half of
the array.

=for usage

	realfft($real);

=cut

*realfft = \&PDL::realfft;

sub PDL::realfft {
    barf("Usage: realfft(real(*)") if $#_ != 0;
    my ($a) = @_;
    todecimal($a);
# FIX: could eliminate $b
    my ($b) = 0*$a;
    fft($a,$b);
    my ($n) = int((($a->dims)[0]-1)/2); my($t);
    ($t=$a->slice("-$n:-1")) .= $b->slice("1:$n");
    undef;
}

=head2 realifft()

=for ref

Inverse of one-dimensional realfft routine [inplace].

=for usage

	realifft($real);

=cut

*realifft = \&PDL::realifft;

sub PDL::realifft {
    use PDL::Ufunc 'max';
    barf("Usage: realifft(xfm(*)") if $#_ != 0;
    my ($a) = @_;
    todecimal($a);
    my ($n) = int((($a->dims)[0]-1)/2); my($t);
# FIX: could eliminate $b
    my ($b) = 0*$a;
    ($t=$b->slice("1:$n")) .= $a->slice("-$n:-1");
    ($t=$a->slice("-$n:-1")) .= $a->slice("$n:1");
    ($t=$b->slice("-$n:-1")) .= -$b->slice("$n:1");
    ifft($a,$b);
# Sanity check -- shouldn't happen
    carp "Bad inverse transform in realifft" if max(abs($b)) > 1e-6*max(abs($a));
    undef;
}

=head2 fftnd()

=for ref

N-dimensional FFT (inplace)

=for example

	fftnd($real,$imag);

=cut

*fftnd = \&PDL::fftnd;

sub PDL::fftnd {
    barf "Must have real and imaginary parts for fftnd" if $#_ != 1;
    my ($r,$i) = @_;
    my ($n) = $r->getndims;
    barf "Dimensions of real and imag must be the same for fft"
        if ($n != $i->getndims);
    $n--;
    todecimal($r);
    todecimal($i);
    # need the copy in case $r and $i point to same memory
    $i = $i->copy;
    foreach (0..$n) {
      fft($r,$i);
      $r = $r->mv(0,$n);
      $i = $i->mv(0,$n);
    }
    $_[0] = $r; $_[1] = $i;
    undef;
}

=head2 ifftnd()

=for ref

N-dimensional inverse FFT

=for example

	ifftnd($real,$imag);

=cut

*ifftnd = \&PDL::ifftnd;

sub PDL::ifftnd {
    barf "Must have real and imaginary parts for ifftnd" if $#_ != 1;
    my ($r,$i) = @_;
    my ($n) = $r->getndims;
    barf "Dimensions of real and imag must be the same for ifft"
        if ($n != $i->getndims);
    todecimal($r);
    todecimal($i);
    # need the copy in case $r and $i point to same memory
    $i = $i->copy;
    $n--;
    foreach (0..$n) {
      ifft($r,$i);
      $r = $r->mv(0,$n);
      $i = $i->mv(0,$n);
    }
    $_[0] = $r; $_[1] = $i;
    undef;
}




=head2 fftconvolve()

=for ref

N-dimensional convolution with periodic boundaries (FFT method)

=for usage

	$kernel = kernctr($image,$smallk);
	fftconvolve($image,$kernel);

fftconvolve works inplace, and returns an error array in kernel as an
accuracy check -- all the values in it should be negligible.

See also L<PDL::ImageND::convolveND|PDL::ImageND/convolveND>, which 
performs speed-optimized convolution with a variety of boundary conditions.

The sizes of the image and the kernel must be the same.
L<kernctr|PDL::ImageND/kernctr> centres a small kernel to emulate the
behaviour of the direct convolution routines.

The speed cross-over between using straight convolution 
(L<PDL::Image2D::conv2d()|PDL::Image2D/conv2d>) and
these fft routines is for kernel sizes roughly 7x7.

=cut

*fftconvolve = \&PDL::fftconvolve;

sub PDL::fftconvolve {
    barf "Must have image & kernel for fftconvolve" if $#_ != 1;
    my ($a, $k) = @_;

    my ($ar,$ai,$kr,$ki,$cr,$ci);

    $ar = $a->copy;
    $ai = $ar->zeros;
    fftnd($ar, $ai);

    $kr = $k->copy;
    $ki = $kr->zeroes;
    fftnd($kr,$ki);

    $cr = $ar->zeroes;
    $ci = $ai->zeroes;
    cmul($ar,$ai,$kr,$ki,$cr,$ci);

    ifftnd($cr,$ci);
    $_[0] = $cr;
    $_[1] = $ci;

    ($cr,$ci);
}

sub PDL::fftconvolve_inplace {
    barf "Must have image & kernel for fftconvolve" if $#_ != 1;
    my ($hr, $hi) = @_;
    my ($n) = $hr->getndims;
    todecimal($hr);   # Convert to double unless already float or double
    todecimal($hi);   # Convert to double unless already float or double
    # need the copy in case $r and $i point to same memory
    $hi = $hi->copy;
    $hr = $hr->copy;
    fftnd($hr,$hi);
    convmath($hr->clump(-1),$hi->clump(-1));
    my ($str1, $str2, $tmp, $i);
    chop($str1 = '-1:1,' x $n);
    chop($str2 = '1:-1,' x $n);

# FIX: do these inplace -- cuts the arithmetic by a factor 2 as well.

    ($tmp = $hr->slice($str2)) += $hr->slice($str1)->copy;
    ($tmp = $hi->slice($str2)) -= $hi->slice($str1)->copy;
    for ($i = 0; $i<$n; $i++) {
	chop ($str1 = ('(0),' x $i).'-1:1,'.('(0),'x($n-$i-1)));
	chop ($str2 = ('(0),' x $i).'1:-1,'.('(0),'x($n-$i-1)));
	($tmp = $hr->slice($str2)) += $hr->slice($str1)->copy;
        ($tmp = $hi->slice($str2)) -= $hi->slice($str1)->copy;
    }
    $hr->clump(-1)->set(0,$hr->clump(-1)->at(0)*2);
    $hi->clump(-1)->set(0,0.);
    ifftnd($hr,$hi);
    $_[0] = $hr; $_[1] = $hi;
    ($hr,$hi);
}





=head2 convmath

=for sig

  Signature: ([o,nc]a(m); [o,nc]b(m))

=for ref

Internal routine doing maths for convolution

=for bad

convmath does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*convmath = \&PDL::convmath;




=head2 cmul

=for sig

  Signature: (ar(); ai(); br(); bi(); [o]cr(); [o]ci())

=for ref

Complex multiplication

=for bad

cmul does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*cmul = \&PDL::cmul;




=head2 cdiv

=for sig

  Signature: (ar(); ai(); br(); bi(); [o]cr(); [o]ci())

=for ref

Complex division

=for bad

cdiv does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*cdiv = \&PDL::cdiv;



1; # OK




=head1 BUGS

Where the source is marked `FIX', could re-implement using phase-shift
factors on the transforms and some real-space bookkeeping, to save
some temporary space and redundant transforms.

=head1 AUTHOR

This file copyright (C) 1997, 1998 R.J.R. Williams
(rjrw@ast.leeds.ac.uk), Karl Glazebrook (kgb@aaoepp.aao.gov.au),
Tuomas J. Lukka, (lukka@husc.harvard.edu).  All rights reserved. There
is no warranty. You are allowed to redistribute this software /
documentation under certain conditions. For details, see the file
COPYING in the PDL distribution. If this file is separated from the
PDL distribution, the copyright notice should be included in the file.


=cut



;



# Exit with OK status

1;