This file is indexed.

/usr/lib/perl5/PDL/Slatec.pm is in pdl 1:2.4.7+dfsg-2ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
#
# GENERATED WITH PDL::PP! Don't modify!
#
package PDL::Slatec;

@EXPORT_OK  = qw(  eigsys matinv polyfit polycoef polyvalue PDL::PP svdc PDL::PP poco PDL::PP geco PDL::PP gefa PDL::PP podi PDL::PP gedi PDL::PP gesl PDL::PP rs PDL::PP ezffti PDL::PP ezfftf PDL::PP ezfftb PDL::PP pcoef PDL::PP pvalue PDL::PP chim PDL::PP chic PDL::PP chsp PDL::PP chfd PDL::PP chfe PDL::PP chia PDL::PP chid PDL::PP chcm PDL::PP polfit );
%EXPORT_TAGS = (Func=>[@EXPORT_OK]);

use PDL::Core;
use PDL::Exporter;
use DynaLoader;



   
   @ISA    = ( 'PDL::Exporter','DynaLoader' );
   push @PDL::Core::PP, __PACKAGE__;
   bootstrap PDL::Slatec ;





=head1 NAME

PDL::Slatec - PDL interface to the slatec numerical programming library

=head1 SYNOPSIS

 use PDL::Slatec;

 ($ndeg, $r, $ierr, $a) = polyfit($x, $y, $w, $maxdeg, $eps);

=head1 DESCRIPTION

This module serves the dual purpose of providing an interface to
parts of the slatec library and showing how to interface PDL
to an external library.
Using this library requires a fortran compiler; the source for the routines
is provided for convenience.

Currently available are routines to:
manipulate matrices; calculate FFT's; 
fit data using polynomials; 
and interpolate/integrate data using piecewise cubic Hermite interpolation.

=head2 Piecewise cubic Hermite interpolation (PCHIP)

PCHIP is the slatec package of routines to perform piecewise cubic
Hermite interpolation of data.
It features software to produce a monotone and "visually pleasing"
interpolant to monotone data.  
According to Fritsch & Carlson ("Monotone piecewise
cubic interpolation", SIAM Journal on Numerical Analysis 
17, 2 (April 1980), pp. 238-246),
such an interpolant may be more reasonable than a cubic spline if
the data contains both "steep" and "flat" sections.  
Interpolation of cumulative probability distribution functions is 
another application.
These routines are cryptically named (blame FORTRAN), 
beginning with 'ch', and accept either float or double piddles. 

Most of the routines require an integer parameter called C<check>;
if set to 0, then no checks on the validity of the input data are
made, otherwise these checks are made.
The value of C<check> can be set to 0 if a routine
such as L<chim|/chim> has already been successfully called.

=over 4

=item * 

If not known, estimate derivative values for the points
using the L<chim|/chim>, L<chic|/chic>, or L<chsp|/chsp> routines
(the following routines require both the function (C<f>)
and derivative (C<d>) values at a set of points (C<x>)). 

=item * 

Evaluate, integrate, or differentiate the resulting PCH
function using the routines:
L<chfd|/chfd>; L<chfe|/chfe>; L<chia|/chia>; L<chid|/chid>.

=item * 

If desired, you can check the monotonicity of your
data using L<chcm|/chcm>. 

=back
 






=head1 FUNCTIONS



=cut




=head2 eigsys

=for ref

Eigenvalues and eigenvectors of a real positive definite symmetric matrix.

=for usage

 ($eigvals,$eigvecs) = eigsys($mat)

Note: this function should be extended to calculate only eigenvalues if called 
in scalar context!

=head2 matinv

=for ref

Inverse of a square matrix

=for usage

 ($inv) = matinv($mat)

=head2 polyfit

Convenience wrapper routine about the C<polfit> C<slatec> function.
Separates supplied arguments and return values.

=for ref

Fit discrete data in a least squares sense by polynomials
in one variable.  Handles threading correctly--one can pass in a 2D PDL (as C<$y>)
and it will pass back a 2D PDL, the rows of which are the polynomial regression
results (in C<$r> corresponding to the rows of $y.

=for usage

 ($ndeg, $r, $ierr, $a) = polyfit($x, $y, $w, $maxdeg, $eps);

 where on input:

 C<x> and C<y> are the values to fit to a polynomial.
 C<w> are weighting factors
 C<maxdeg> is the maximum degree of polynomial to use and 
 C<eps> is the required degree of fit.

 and on output:

 C<ndeg> is the degree of polynomial actually used
 C<r> is the values of the fitted polynomial 
 C<ierr> is a return status code, and
 C<a> is some working array or other
 C<eps> is modified to contain the rms error of the fit.

=for bad

This version of polyfit handles bad values correctly.  It strips them out
of the $x variable and creates an appropriate $y variable containing indices
of the non-bad members of $x before calling the Slatec routine C<polfit>.

=head2 polycoef

Convenience wrapper routine around the C<pcoef> C<slatec> function.
Separates supplied arguments and return values.                               

=for ref

Convert the C<polyfit>/C<polfit> coefficients to Taylor series form.

=for usage

 $tc = polycoef($l, $c, $a);

=head2 polyvalue

Convenience wrapper routine around the C<pvalue> C<slatec> function.
Separates supplied arguments and return values.

For multiple input x positions, a corresponding y position is calculated.

The derivatives PDL is one dimensional (of size C<nder>) if a single x
position is supplied, two dimensional if more than one x position is
supplied.                                                                     

=for ref

Use the coefficients generated by C<polyfit> (or C<polfit>) to evaluate
the polynomial fit of degree C<l>, along with the first C<nder> of its
derivatives, at a specified point.

=for usage

 ($yfit, $yp) = polyvalue($l, $nder, $x, $a);

=head2 detslatec

=for ref

compute the determinant of an invertible matrix

=for example

  $mat = zeroes(5,5); $mat->diagonal(0,1) .= 1; # unity matrix
  $det = detslatec $mat;

Usage:

=for usage

  $determinant = detslatec $matrix;

=for sig

  Signature: detslatec(mat(n,m); [o] det())

C<detslatec> computes the determinant of an invertible matrix and barfs if
the matrix argument provided is non-invertible. The matrix threads as usual.

This routine was previously known as C<det> which clashes now with
L<det|PDL::MatrixOps/det> which is provided by
L<PDL::MatrixOps|PDL::MatrixOps>. For the moment
L<PDL::Slatec|PDL::Slatec> will also load
L<PDL::MatrixOps|PDL::MatrixOps> thereby making sure that older
scripts work.

=head2 PDL::Slatec::fft

=for ref

Fast Fourier Transform

=for example

  $v_in = pdl(1,0,1,0);
  ($azero,$a,$b) = PDL::Slatec::fft($v_in);

C<PDL::Slatec::fft> is a convenience wrapper for L<ezfftf|ezfftf>, and
performs a Fast Fourier Transform on an input vector C<$v_in>. The
return values are the same as for L<ezfftf|ezfftf>.

=head2 PDL::Slatec::rfft

=for ref

reverse Fast Fourier Transform

=for example

  $v_out = PDL::Slatec::rfft($azero,$a,$b);
  print $v_in, $vout
  [1 0 1 0] [1 0 1 0]

C<PDL::Slatec::rfft> is a convenience wrapper for L<ezfftb|ezfftb>,
and performs a reverse Fast Fourier Transform. The input is the same
as the output of L<PDL::Slatec::fft|/PDL::Slatec::fft>, and the output
of C<rfft> is a data vector, similar to what is input into
L<PDL::Slatec::fft|/PDL::Slatec::fft>.

=cut




use PDL::Core;
use PDL::Basic;
use PDL::Primitive;
use PDL::Ufunc;
use strict;

# Note: handles only real symmetric positive-definite.

*eigsys = \&PDL::eigsys;

sub PDL::eigsys {
	my($h) = @_;
	$h = float($h);
	rs($h, 
		(my $eigval=PDL->null),
		(long (pdl (1))),(my $eigmat=PDL->null),
		(my $fvone = PDL->null),(my $fvtwo = PDL->null),
		(my $errflag=PDL->null)
	);
#	print $covar,$eigval,$eigmat,$fvone,$fvtwo,$errflag;
	if(sum($errflag) > 0) {
		barf("Non-positive-definite matrix given to eigsys: $h\n");
	}
	return ($eigval,$eigmat);
}

*matinv = \&PDL::matinv;

sub PDL::matinv {
	my($m) = @_;
	my(@dims) = $m->dims;

	# Keep from dumping core (FORTRAN does no error checking)
	barf("matinv requires a 2-D square matrix")
		unless( @dims >= 2 && $dims[0] == $dims[1] );
  
	$m = $m->copy(); # Make sure we don't overwrite :(
	gefa($m,(my $ipvt=null),(my $info=null));
	if(sum($info) > 0) {
		barf("Uninvertible matrix given to inv: $m\n");
	}
	gedi($m,$ipvt,(pdl 0,0),(null),(long( pdl (1))));
	$m;
}

*detslatec = \&PDL::detslatec;
sub PDL::detslatec {
	my($m) = @_;
	$m = $m->copy(); # Make sure we don't overwrite :(
	gefa($m,(my $ipvt=null),(my $info=null));
	if(sum($info) > 0) {
		barf("Uninvertible matrix given to inv: $m\n");
	}
	gedi($m,$ipvt,(my $det=null),(null),(long( pdl (10))));
	return $det->slice('(0)')*10**$det->slice('(1)');
}


sub prepfft {
	my($n) = @_;
	my $tmp = PDL->zeroes(float(),$n*3+15);
	$n = pdl $n;
	ezffti($n,$tmp);
	return $tmp;
}

sub fft (;@) {
	my($v) = @_;
	my $ws = prepfft($v->getdim(0));
	ezfftf($v,(my $az = PDL->null), (my $a = PDL->null),
		  (my $b = PDL->null), $ws);
	return ($az,$a,$b);
}

sub rfft {
	my($az,$a,$b) = @_;
	my $ws = prepfft($a->getdim(0));
	my $v = $a->copy();
	ezfftb($v,$az,$a,$b,$ws);
	return $v;
}

# polynomial fitting routines
# simple wrappers around the SLATEC implementations

*polyfit = \&PDL::polyfit;
sub PDL::polyfit {
  barf 'Usage: polyfit($x, $y, $w, $maxdeg, $eps);'
    unless @_ == 5;

  # Create the output arrays
  my $r = PDL->null;

  # A array needs some work space
  my $sz = ((3*$_[0]->getdim(0)) + (3*$_[3]) + 3);
  my @otherdims = $_[0]->dims; shift @otherdims;
  my $a = $_[0]->zeroes( $sz, @otherdims ); # This should be of type $x

  my $ierr = PDL->null;
  my $ndeg = PDL->null;

  # Now call polfit                                                           
  polfit($_[0], $_[1], $_[2], $_[3], $ndeg, $_[4], $r, $ierr, $a);

  # Return the arrays
  return ($ndeg, $r, $ierr, $a);
}


*polycoef = \&PDL::polycoef;
sub PDL::polycoef {
  barf 'Usage: polycoef($l, $c, $a);'
    unless @_ == 3;

  # Allocate memory for return PDL
  # Simply l + 1 but cant see how to get PP to do this - TJ
  # Not sure the return type since I do not know
  # where PP will get the information from
  my $tc = PDL->zeroes( abs($_[0]) + 1 );                                     

  # Run the slatec routine
  pcoef($_[0], $_[1], $tc, $_[2]);

  # Return results
  return $tc;

}

*polyvalue = \&PDL::polyvalue;
sub PDL::polyvalue {
  barf 'Usage: polyvalue($l, $nder, $x, $a);'
    unless @_ == 4;

  # Two output arrays
  my $yfit = PDL->null;

  # This one must be preallocated and must take into account
  # the size of $x if greater than 1
  my $yp;
  if ($_[2]->getdim(0) == 1) {
    $yp = $_[2]->zeroes($_[1]);
  } else {
    $yp = $_[2]->zeroes($_[1], $_[2]->getdim(0));
  }

  # Run the slatec function
  pvalue($_[0], $_[2], $yfit, $yp, $_[3]);

  # Returns
  return ($yfit, $yp);

}
                                                                              




=head2 svdc

=for sig

  Signature: (x(n,p);[o]s(p);[o]e(p);[o]u(n,p);[o]v(p,p);[o]work(n);int job();int [o]info())

=for ref

singular value decomposition of a matrix

=for bad

svdc does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*svdc = \&PDL::svdc;




=head2 poco

=for sig

  Signature: (a(n,n);rcond();[o]z(n);int [o]info())

Factor a real symmetric positive definite matrix
and estimate the condition number of the matrix.

=for bad

poco does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*poco = \&PDL::poco;




=head2 geco

=for sig

  Signature: (a(n,n);int [o]ipvt(n);[o]rcond();[o]z(n))

Factor a matrix using Gaussian elimination and estimate
the condition number of the matrix.

=for bad

geco does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*geco = \&PDL::geco;




=head2 gefa

=for sig

  Signature: (a(n,n);int [o]ipvt(n);int [o]info())

=for ref

Factor a matrix using Gaussian elimination.

=for bad

gefa does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*gefa = \&PDL::gefa;




=head2 podi

=for sig

  Signature: (a(n,n);[o]det(two=2);int job())

Compute the determinant and inverse of a certain real
symmetric positive definite matrix using the factors
computed by L<poco|/poco>.

=for bad

podi does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*podi = \&PDL::podi;




=head2 gedi

=for sig

  Signature: (a(n,n);int [o]ipvt(n);[o]det(two=2);[o]work(n);int job())

Compute the determinant and inverse of a matrix using the
factors computed by L<geco|/geco> or L<gefa|/gefa>.

=for bad

gedi does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*gedi = \&PDL::gedi;




=head2 gesl

=for sig

  Signature: (a(lda,n);int ipvt(n);b(n);int job())

Solve the real system C<A*X=B> or C<TRANS(A)*X=B> using the
factors computed by L<geco|/geco> or L<gefa|/gefa>.

=for bad

gesl does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*gesl = \&PDL::gesl;




=head2 rs

=for sig

  Signature: (a(n,n);[o]w(n);int matz();[o]z(n,n);[t]fvone(n);[t]fvtwo(n);int [o]ierr())

This subroutine calls the recommended sequence of
subroutines from the eigensystem subroutine package (EISPACK)
to find the eigenvalues and eigenvectors (if desired)
of a REAL SYMMETRIC matrix.

=for bad

rs does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*rs = \&PDL::rs;




=head2 ezffti

=for sig

  Signature: (int n();[o]wsave(foo))

Subroutine ezffti initializes the work array C<wsave()>
which is used in both L<ezfftf|/ezfftf> and 
L<ezfftb|/ezfftb>.  
The prime factorization
of C<n> together with a tabulation of the trigonometric functions
are computed and stored in C<wsave()>.

=for bad

ezffti does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*ezffti = \&PDL::ezffti;




=head2 ezfftf

=for sig

  Signature: (r(n);[o]azero();[o]a(n);[o]b(n);wsave(foo))

=for ref



=for bad

ezfftf does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*ezfftf = \&PDL::ezfftf;




=head2 ezfftb

=for sig

  Signature: ([o]r(n);azero();a(n);b(n);wsave(foo))

=for ref



=for bad

ezfftb does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*ezfftb = \&PDL::ezfftb;




=head2 pcoef

=for sig

  Signature: (int l();c();[o]tc(bar);a(foo))

Convert the C<polfit> coefficients to Taylor series form.
C<c> and C<a()> must be of the same type.

=for bad

pcoef does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*pcoef = \&PDL::pcoef;




=head2 pvalue

=for sig

  Signature: (int l();x();[o]yfit();[o]yp(nder);a(foo))

Use the coefficients generated by C<polfit> to evaluate the
polynomial fit of degree C<l>, along with the first C<nder> of
its derivatives, at a specified point. C<x> and C<a> must be of the
same type.

=for bad

pvalue does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*pvalue = \&PDL::pvalue;




=head2 chim

=for sig

  Signature: (x(n);f(n);[o]d(n);int [o]ierr())


=for ref

Calculate the derivatives of (x,f(x)) using cubic Hermite interpolation.

Calculate the derivatives at the given set of points (C<$x,$f>,
where C<$x> is strictly increasing).
The resulting set of points - C<$x,$f,$d>, referred to
as the cubic Hermite representation - can then be used in
other functions, such as L<chfe|/chfe>, L<chfd|/chfd>,
and L<chia|/chia>.

The boundary conditions are compatible with monotonicity,
and if the data are only piecewise monotonic, the interpolant
will have an extremum at the switch points; for more control
over these issues use L<chic|/chic>. 

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

E<gt> 0 if there were C<ierr> switches in the direction of 
monotonicity (data still valid).

=item *

-1 if C<nelem($x) E<lt> 2>.

=item *

-3 if C<$x> is not strictly increasing.

=back


=for bad

chim does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*chim = \&PDL::chim;




=head2 chic

=for sig

  Signature: (int ic(two=2);vc(two=2);mflag();x(n);f(n);[o]d(n);wk(nwk);int [o]ierr())


=for ref

Calculate the derivatives of (x,f(x)) using cubic Hermite interpolation.

Calculate the derivatives at the given points (C<$x,$f>,
where C<$x> is strictly increasing).
Control over the boundary conditions is given by the 
C<$ic> and C<$vc> piddles, and the value of C<$mflag> determines
the treatment of points where monotoncity switches
direction. A simpler, more restricted, interface is available 
using L<chim|/chim>.

The first and second elements of C<$ic> determine the boundary
conditions at the start and end of the data respectively.
If the value is 0, then the default condition, as used by
L<chim|/chim>, is adopted.
If greater than zero, no adjustment for monotonicity is made,
otherwise if less than zero the derivative will be adjusted.
The allowed magnitudes for C<ic(0)> are:

=over 4

=item *  

1 if first derivative at C<x(0)> is given in C<vc(0)>.

=item *

2 if second derivative at C<x(0)> is given in C<vc(0)>.

=item *

3 to use the 3-point difference formula for C<d(0)>.
(Reverts to the default b.c. if C<n E<lt> 3>)

=item *

4 to use the 4-point difference formula for C<d(0)>.
(Reverts to the default b.c. if C<n E<lt> 4>)

=item *

5 to set C<d(0)> so that the second derivative is 
continuous at C<x(1)>.
(Reverts to the default b.c. if C<n E<lt> 4>) 

=back

The values for C<ic(1)> are the same as above, except that
the first-derivative value is stored in C<vc(1)> for cases 1 and 2.
The values of C<$vc> need only be set if options 1 or 2 are chosen
for C<$ic>.

Set C<$mflag = 0> if interpolant is required to be monotonic in
each interval, regardless of the data. This causes C<$d> to be
set to 0 at all switch points. Set C<$mflag> to be non-zero to
use a formula based on the 3-point difference formula at switch
points. If C<$mflag E<gt> 0>, then the interpolant at swich points
is forced to not deviate from the data by more than C<$mflag*dfloc>, 
where C<dfloc> is the maximum of the change of C<$f> on this interval
and its two immediate neighbours.
If C<$mflag E<lt> 0>, no such control is to be imposed.            

The piddle C<$wk> is only needed for work space. However, I could
not get it to work as a temporary variable, so you must supply
it; it is a 1D piddle with C<2*n> elements.

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

1 if C<ic(0) E<lt> 0> and C<d(0)> had to be adjusted for
monotonicity.

=item *

2 if C<ic(1) E<lt> 0> and C<d(n-1)> had to be adjusted
for monotonicity.

=item * 

3 if both 1 and 2 are true.

=item *

-1 if C<n E<lt> 2>.

=item *

-3 if C<$x> is not strictly increasing.

=item *

-4 if C<abs(ic(0)) E<gt> 5>.

=item *

-5 if C<abs(ic(1)) E<gt> 5>.

=item *

-6 if both -4 and -5  are true.

=item *

-7 if C<nwk E<lt> 2*(n-1)>.

=back


=for bad

chic does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*chic = \&PDL::chic;




=head2 chsp

=for sig

  Signature: (int ic(two=2);vc(two=2);x(n);f(n);[o]d(n);wk(nwk);int [o]ierr())


=for ref

Calculate the derivatives of (x,f(x)) using cubic spline interpolation.

Calculate the derivatives, using cubic spline interpolation,
at the given points (C<$x,$f>), with the specified
boundary conditions. 
Control over the boundary conditions is given by the 
C<$ic> and C<$vc> piddles.
The resulting values - C<$x,$f,$d> - can
be used in all the functions which expect a cubic
Hermite function.

The first and second elements of C<$ic> determine the boundary
conditions at the start and end of the data respectively.
The allowed values for C<ic(0)> are:

=over 4

=item *

0 to set C<d(0)> so that the third derivative is 
continuous at C<x(1)>.

=item *

1 if first derivative at C<x(0)> is given in C<vc(0>).

=item *

2 if second derivative at C<x(0>) is given in C<vc(0)>.

=item *

3 to use the 3-point difference formula for C<d(0)>.
(Reverts to the default b.c. if C<n E<lt> 3>.)

=item *

4 to use the 4-point difference formula for C<d(0)>.
(Reverts to the default b.c. if C<n E<lt> 4>.)                 

=back

The values for C<ic(1)> are the same as above, except that
the first-derivative value is stored in C<vc(1)> for cases 1 and 2.
The values of C<$vc> need only be set if options 1 or 2 are chosen
for C<$ic>.

The piddle C<$wk> is only needed for work space. However, I could
not get it to work as a temporary variable, so you must supply
it; it is a 1D piddle with C<2*n> elements.

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

-1  if C<nelem($x) E<lt> 2>.

=item *

-3  if C<$x> is not strictly increasing.

=item *

-4  if C<ic(0) E<lt> 0> or C<ic(0) E<gt> 4>.

=item *

-5  if C<ic(1) E<lt> 0> or C<ic(1) E<gt> 4>.

=item *

-6  if both of the above are true.

=item *

-7  if C<nwk E<lt> 2*n>.

=item *

-8  in case of trouble solving the linear system
for the interior derivative values.

=back


=for bad

chsp does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*chsp = \&PDL::chsp;




=head2 chfd

=for sig

  Signature: (x(n);f(n);d(n);int check();xe(ne);[o]fe(ne);[o]de(ne);int [o]ierr())


=for ref

Interpolate function and derivative values.

Given a piecewise cubic Hermite function - such as from
L<chim|/chim> - evaluate the function (C<$fe>) and 
derivative (C<$de>) at a set of points (C<$xe>).
If function values alone are required, use L<chfe|/chfe>.
Set C<check> to 0 to skip checks on the input data.

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

E<gt>0 if extrapolation was performed at C<ierr> points
(data still valid).

=item *

-1 if C<nelem($x) E<lt> 2>

=item *

-3 if C<$x> is not strictly increasing.

=item *

-4 if C<nelem($xe) E<lt> 1>.

=item *

-5 if an error has occurred in a lower-level routine,
which should never happen.

=back


=for bad

chfd does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*chfd = \&PDL::chfd;




=head2 chfe

=for sig

  Signature: (x(n);f(n);d(n);int check();xe(ne);[o]fe(ne);int [o]ierr())


=for ref

Interpolate function values.

Given a piecewise cubic Hermite function - such as from
L<chim|/chim> - evaluate the function (C<$fe>) at
a set of points (C<$xe>).
If derivative values are also required, use L<chfd|/chfd>.
Set C<check> to 0 to skip checks on the input data.

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

E<gt>0 if extrapolation was performed at C<ierr> points
(data still valid).

=item *

-1 if C<nelem($x) E<lt> 2>

=item *

-3 if C<$x> is not strictly increasing.

=item *

-4 if C<nelem($xe) E<lt> 1>.

=back


=for bad

chfe does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*chfe = \&PDL::chfe;




=head2 chia

=for sig

  Signature: (x(n);f(n);d(n);int check();a();b();[o]ans();int [o]ierr())


=for ref

Integrate (x,f(x)) over arbitrary limits.

Evaluate the definite integral of a a piecewise
cubic Hermite function over an arbitrary interval,
given by C<[$a,$b]>.
See L<chid|/chid> if the integration limits are
data points.
Set C<check> to 0 to skip checks on the input data.

The values of C<$a> and C<$b> do not have
to lie within C<$x>, although the resulting integral
value will be highly suspect if they are not.

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

1 if C<$a> lies outside C<$x>.

=item *

2 if C<$b> lies outside C<$x>.

=item *

3 if both 1 and 2 are true.

=item *

-1 if C<nelem($x) E<lt> 2>

=item *

-3 if C<$x> is not strictly increasing.

=item *

-4 if an error has occurred in a lower-level routine,
which should never happen.

=back


=for bad

chia does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*chia = \&PDL::chia;




=head2 chid

=for sig

  Signature: (x(n);f(n);d(n);int check();int ia();int ib();[o]ans();int [o]ierr())


=for ref

Integrate (x,f(x)) between data points.

Evaluate the definite integral of a a piecewise
cubic Hermite function between C<x($ia)> and
C<x($ib)>. 

See L<chia|/chia> for integration between arbitrary
limits.

Although using a fortran routine, the values of
C<$ia> and C<$ib> are zero offset.
Set C<check> to 0 to skip checks on the input data.

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

-1 if C<nelem($x) E<lt> 2>.

=item *

-3 if C<$x> is not strictly increasing.

=item *

-4 if C<$ia> or C<$ib> is out of range.

=back


=for bad

chid does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*chid = \&PDL::chid;




=head2 chcm

=for sig

  Signature: (x(n);f(n);d(n);int check();int [o]ismon(n);int [o]ierr())


=for ref

Check the given piecewise cubic Hermite function for monotonicity.

The outout piddle C<$ismon> indicates over
which intervals the function is monotonic.
Set C<check> to 0 to skip checks on the input data.

For the data interval C<[x(i),x(i+1)]>, the
values of C<ismon(i)> can be:

=over 4

=item *

-3 if function is probably decreasing

=item *

-1 if function is strictly decreasing

=item *

0  if function is constant

=item *

1  if function is strictly increasing

=item *

2  if function is non-monotonic

=item *

3  if function is probably increasing

=back

If C<abs(ismon(i)) == 3>, the derivative values are
near the boundary of the monotonicity region. A small
increase produces non-monotonicity, whereas a decrease
produces strict monotonicity.

The above applies to C<i = 0 .. nelem($x)-1>. The last element of
C<$ismon> indicates whether
the entire function is monotonic over $x.

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

-1 if C<n E<lt> 2>.

=item *

-3 if C<$x> is not strictly increasing.

=back


=for bad

chcm does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*chcm = \&PDL::chcm;




=head2 polfit

=for sig

  Signature: (x(n);y(n);w(n);int maxdeg();int [o]ndeg();[o]eps();[o]r(n);int [o]ierr();[o]a(foo);[t]xtmp(n);[t]ytmp(n);[t]wtmp(n);[t]rtmp(n))

Fit discrete data in a least squares sense by polynomials
          in one variable. C<x()>, C<y()> and C<w()> must be of the same type.
	  This version handles bad values appropriately

=for bad

polfit does handle bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut






*polfit = \&PDL::polfit;



=head1 AUTHOR

Copyright (C) 1997 Tuomas J. Lukka. 
Copyright (C) 2000 Tim Jenness, Doug Burke.            
All rights reserved. There is no warranty. You are allowed
to redistribute this software / documentation under certain
conditions. For details, see the file COPYING in the PDL 
distribution. If this file is separated from the PDL distribution, 
the copyright notice should be included in the file.

=cut


;



# Exit with OK status

1;