This file is indexed.

/usr/share/pyshared/PyMca/ArraySave.py is in pymca 4.5.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
#/*##########################################################################
# Copyright (C) 2004-2012 European Synchrotron Radiation Facility
#
# This file is part of the PyMCA X-ray Fluorescence Toolkit developed at
# the ESRF by the Beamline Instrumentation Software Support (BLISS) group.
#
# This toolkit is free software; you can redistribute it and/or modify it 
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option) 
# any later version.
#
# PyMCA is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# PyMCA; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
# Suite 330, Boston, MA 02111-1307, USA.
#
# PyMCA follows the dual licensing model of Trolltech's Qt and Riverbank's PyQt
# and cannot be used as a free plugin for a non-free program. 
#
# Please contact the ESRF industrial unit (industry@esrf.fr) if this license 
# is a problem for you.
#############################################################################*/
import os
import numpy
import time

try:
    from PyMca import EdfFile
    from PyMca import TiffIO
except ImportError:
    import EdfFile
    import TiffIO

HDF5 = True
try:
    import h5py
except ImportError:
    HDF5 = False


DEBUG = 0

def getDate():
    localtime = time.localtime()
    gtime = time.gmtime()
    #year, month, day, hour, minute, second,\
    #      week_day, year_day, delta = time.localtime()
    year   = localtime[0]
    month  = localtime[1]
    day    = localtime[2]
    hour   = localtime[3]
    minute = localtime[4]
    second = localtime[5]
    #get the difference against Greenwich
    delta  = hour - gtime[3]
    return "%4d-%02d-%02dT%02d:%02d:%02d%+02d:00" % (year, month, day, hour, minute, second, delta)

def save2DArrayListAsASCII(datalist, filename, labels = None, csv=False, csvseparator=";"):
    if type(datalist) != type([]):
        datalist = [datalist]
    r, c = datalist[0].shape
    ndata = len(datalist)
    if os.path.exists(filename):
        try:
            os.remove(filename)
        except:
            pass
    if labels is None:
        labels = []
        for i in range(len(datalist)):
            labels.append("Array_%d" % i)
    if len(labels) != len(datalist):
        raise ValueError("Incorrect number of labels")
    if csv:
        header = '"row"%s"column"' % csvseparator
        for label in labels:
            header +='%s"%s"' % (csvseparator,label)
    else:
        header = "row  column"
        for label in labels:
            header +="  %s" % label
    filehandle=open(filename,'w+')
    filehandle.write('%s\n' % header)
    fileline=""
    if csv:
        for row in range(r):
            for col in range(c):
                fileline += "%d" % row
                fileline += "%s%d" % (csvseparator,col)
                for i in range(ndata):
                    fileline +="%s%g" % (csvseparator, datalist[i][row, col])
                fileline += "\n"
                filehandle.write("%s" % fileline)
                fileline =""
    else:
        for row in range(r):
            for col in range(c):
                fileline += "%d" % row
                fileline += "  %d" % col
                for i in range(ndata):
                    fileline +="  %g" % datalist[i][row, col]
                fileline += "\n"
                filehandle.write("%s" % fileline)
                fileline =""
    filehandle.write("\n") 
    filehandle.close()

def save2DArrayListAsEDF(datalist, filename, labels = None, dtype=None):
    if type(datalist) != type([]):
        datalist = [datalist]
    ndata = len(datalist)
    if os.path.exists(filename):
        try:
            os.remove(filename)
        except:
            pass
    if labels is None:
        labels = []
        for i in range(ndata):
            labels.append("Array_%d" % i) 
    if len(labels) != ndata:
        raise ValueError("Incorrect number of labels")
    edfout   = EdfFile.EdfFile(filename, access="ab")
    for i in range(ndata):
        if dtype is None:
            edfout.WriteImage ({'Title':labels[i]} , datalist[i], Append=1)
        else:
            edfout.WriteImage ({'Title':labels[i]} ,
                               datalist[i].astype(dtype),
                               Append=1)
    del edfout #force file close

def save2DArrayListAsMonochromaticTiff(datalist, filename, labels = None, dtype=None):
    if type(datalist) != type([]):
        datalist = [datalist]
    ndata = len(datalist)
    if dtype is None:
        dtype = datalist[0].dtype
        for i in range(len(datalist)):
            dtypeI = datalist[i].dtype
            if dtypeI in [numpy.float32, numpy.float64] or\
               dtypeI.str[-2] == 'f':
                dtype = numpy.float32
                break
            elif dtypeI != dtype:
                dtype = numpy.float32
                break        
    if os.path.exists(filename):
        try:
            os.remove(filename)
        except:
            pass
    if labels is None:
        labels = []
        for i in range(ndata):
            labels.append("Array_%d" % i) 
    if len(labels) != ndata:
        raise ValueError("Incorrect number of labels")
    outfileInstance   = TiffIO.TiffIO(filename, mode="wb+")
    for i in range(ndata):
        if i == 1:
            outfileInstance = TiffIO.TiffIO(filename, mode="rb+")    
        if dtype is None:
            data = datalist[i]
        else:
            data = datalist[i].astype(dtype)
        outfileInstance.writeImage (data, info={'Title':labels[i]})
    outFileInstance = None #force file close

def openHDF5File(name, mode='a', **kwargs):
        """
        Open an HDF5 file.

        Valid modes (like Python's file() modes) are:
        - r   Readonly, file must exist
        - r+  Read/write, file must exist
        - w   Create file, truncate if exists
        - w-  Create file, fail if exists
        - a   Read/write if exists, create otherwise (default)

        sorted_with is a callable function like python's builtin sorted, or
        None.
        """

        h5file = h5py.File(name, mode, **kwargs)
        if h5file.mode != 'r' and len(h5file) == 0:
            if 'file_name' not in h5file.attrs:
                attr  = 'file_name'
                txt   = "%s" % name
                dtype = '<S%d' % len(txt)
                h5file.attrs.create(attr, txt, dtype=dtype)
            if 'file_time' not in h5file.attrs:
                attr  = 'file_time'
                txt   = "%s" % getDate()
                dtype = '<S%d' % len(txt)
                h5file.attrs.create(attr, txt, dtype=dtype)
            if 'HDF5_version' not in h5file.attrs:
                attr  = 'HDF5_version'
                txt   = "%s" % h5py.version.hdf5_version
                dtype = '<S%d' % len(txt)
                h5file.attrs.create(attr, txt, dtype=dtype)
            if 'HDF5_API_version' not in h5file.attrs:
                attr  = 'HDF5_API_version'
                txt   = "%s" % h5py.version.api_version
                dtype = '<S%d' % len(txt)
                h5file.attrs.create(attr, txt, dtype=dtype)
            if 'h5py_version' not in h5file.attrs:
                attr  = 'h5py_version'
                txt   = "%s" % h5py.version.version
                dtype = '<S%d' % len(txt)
                h5file.attrs.create(attr, txt, dtype=dtype)
            if 'creator' not in h5file.attrs:
                attr  = 'creator'
                txt   = "%s" % 'PyMca'
                dtype = '<S%d' % len(txt)
                h5file.attrs.create(attr, txt, dtype=dtype)
            #if 'format_version' not in self.attrs and len(h5file) == 0:
            #    h5file.attrs['format_version'] = __format_version__

        return h5file


def getHDF5FileInstanceAndBuffer(filename, shape,
                                 buffername="data",
                                 dtype=numpy.float32,
                                 interpretation=None,
                                 compression=None):
    if not HDF5:
        raise IOError('h5py does not seem to be installed in your system')

    if os.path.exists(filename):
        try:
            os.remove(filename)
        except:
            raise IOError("Cannot overwrite existing file!")
    hdf = openHDF5File(filename, 'a')
    entryName = "data"

    #entry
    nxEntry = hdf.require_group(entryName)
    if 'NX_class' not in nxEntry.attrs:
        nxEntry.attrs['NX_class'] = 'NXentry'.encode('utf-8')
    elif nxEntry.attrs['NX_class'] != 'NXentry'.encode('utf-8'):
        #should I raise an error?
        pass
    nxEntry['title'] = "PyMca saved 3D Array".encode('utf-8')
    nxEntry['start_time'] = getDate().encode('utf-8')
    nxData = nxEntry.require_group('NXdata')
    if 'NX_class' not in nxData.attrs:
        nxData.attrs['NX_class'] = 'NXdata'.encode('utf-8')
    elif nxData.attrs['NX_class'] == 'NXdata'.encode('utf-8'):
        #should I raise an error?
        pass
    if compression:
        if DEBUG:
            print("Saving compressed and chunked dataset")
        chunk1 = int(shape[1]/10)
        if chunk1 == 0:
            chunk1 = shape[1]
        for i in [11, 10, 8, 7, 5, 4]:
            if (shape[1] % i) == 0:
                chunk1 = int(shape[1]/i)
                break
        chunk2 = int(shape[2]/10)
        if chunk2 == 0:
            chunk2 = shape[2]
        for i in [11, 10, 8, 7, 5, 4]:
            if (shape[2] % i) == 0:
                chunk2 = int(shape[2]/i)
                break
        data = nxData.require_dataset(buffername,
                           shape=shape,
                           dtype=dtype,
                           chunks=(1, chunk1, chunk2),
                           compression=compression)
    else:
        #no chunking
        if DEBUG:
            print("Saving not compressed and not chunked dataset")
        data = nxData.require_dataset(buffername,
                           shape=shape,
                           dtype=dtype,
                           compression=None)        
    data.attrs['signal'] = numpy.int32(1)
    if interpretation is not None:
        data.attrs['interpretation'] = interpretation.encode('utf-8')
    for i in range(len(shape)):
        dim = numpy.arange(shape[i]).astype(numpy.float32)
        dset = nxData.require_dataset('dim_%d' % i,
                               dim.shape,
                               dim.dtype,
                               dim,
                               chunks=dim.shape)
        dset.attrs['axis'] = numpy.int32(i + 1)
    nxEntry['end_time'] = getDate().encode('utf-8')
    return hdf, data


def save3DArrayAsMonochromaticTiff(data, filename, labels = None, dtype=None, mcaindex=-1):
    ndata = data.shape[mcaindex]
    if dtype is None:
        dtype = numpy.float32
    if os.path.exists(filename):
        try:
            os.remove(filename)
        except:
            pass
    if labels is None:
        labels = []
        for i in range(ndata):
            labels.append("Array_%d" % i) 
    if len(labels) != ndata:
        raise ValueError("Incorrect number of labels")
    outfileInstance   = TiffIO.TiffIO(filename, mode="wb+")
    if mcaindex in [2, -1]:
        for i in range(ndata):
            if i == 1:
                outfileInstance = TiffIO.TiffIO(filename, mode="rb+")    
            if dtype is None:
                tmpData = data[:,:,i]
            else:
                tmpData = data[:,:,i].astype(dtype)
            outfileInstance.writeImage (tmpData, info={'Title':labels[i]})
            if (ndata > 10):
                print("Saved image %d of %d" % (i+1, ndata))
    elif mcaindex == 1:
        for i in range(ndata):
            if i == 1:
                outfileInstance = TiffIO.TiffIO(filename, mode="rb+")    
            if dtype is None:
                tmpData = data[:,i,:]
            else:
                tmpData = data[:,i,:].astype(dtype)
            outfileInstance.writeImage (tmpData, info={'Title':labels[i]})        
            if (ndata > 10):
                print("Saved image %d of %d" % (i+1, ndata))
    else:
        for i in range(ndata):
            if i == 1:
                outfileInstance = TiffIO.TiffIO(filename, mode="rb+")    
            if dtype is None:
                tmpData = data[i]
            else:
                tmpData = data[i].astype(dtype)
            outfileInstance.writeImage (tmpData, info={'Title':labels[i]})
            if (ndata > 10):
                print("Saved image %d of %d" % (i+1, ndata))
    outFileInstance = None #force file close

def save3DArrayAsHDF5(data, filename, labels = None, dtype=None, mode='nexus',
                      mcaindex=-1, interpretation=None, compression=None):
    if not HDF5:
        raise IOError('h5py does not seem to be installed in your system')
    if (mcaindex == 0) and (interpretation in ["spectrum", None]):
        #stack of images to be saved as stack of spectra
        modify = True
        shape  = [data.shape[1], data.shape[2], data.shape[0]]
    elif (mcaindex != 0 ) and (interpretation in ["image"]):
        #stack of spectra to be saved as stack of images
        modify = True
        shape = [data.shape[2], data.shape[0], data.shape[1]]
    else:
        modify = False
        shape = data.shape
    if dtype is None:
        dtype =data.dtype
    if mode.lower() in ['nexus', 'nexus+']:
        #raise IOError, 'NeXus data saving not implemented yet'
        if os.path.exists(filename):
            try:
                os.remove(filename)
            except:
                raise IOError("Cannot overwrite existing file!")
        hdf = openHDF5File(filename, 'a')
        entryName = "data"
        #entry
        nxEntry = hdf.require_group(entryName)
        if 'NX_class' not in nxEntry.attrs:
            nxEntry.attrs['NX_class'] = 'NXentry'.encode('utf-8')
        elif nxEntry.attrs['NX_class'] != 'NXentry'.encode('utf-8'):
            #should I raise an error?
            pass
        
        nxEntry['title'] = "PyMca saved 3D Array".encode('utf-8')
        nxEntry['start_time'] = getDate().encode('utf-8')
        nxData = nxEntry.require_group('NXdata')
        if ('NX_class' not in nxData.attrs):
            nxData.attrs['NX_class'] = 'NXdata'.encode('utf-8')
        elif nxData.attrs['NX_class'] != 'NXdata'.encode('utf-8'):
            #should I raise an error?
            pass
        if modify:
            if interpretation in ["image", "image".encode('utf-8')]:
                if compression:
                    if DEBUG:
                        print("Saving compressed and chunked dataset")
                    #risk of taking a 10 % more space in disk
                    chunk1 = int(shape[1]/10)
                    if chunk1 == 0:
                        chunk1 = shape[1]
                    for i in [11, 10, 8, 7, 5, 4]:
                        if (shape[1] % i) == 0:
                            chunk1 = int(shape[1]/i)
                            break
                    chunk2 = int(shape[2]/10)
                    for i in [11, 10, 8, 7, 5, 4]:
                        if (shape[2] % i) == 0:
                            chunk2 = int(shape[2]/i)
                            break
                    dset = nxData.require_dataset('data',
                                       shape=shape,
                                       dtype=dtype,
                                       chunks=(1, chunk1, chunk2),
                                       compression=compression)
                else:
                    if DEBUG:
                        print("Saving not compressed and not chunked dataset")
                    #print not compressed -> Not chunked
                    dset = nxData.require_dataset('data',
                                       shape=shape,
                                       dtype=dtype,
                                       compression=None)
                for i in range(data.shape[-1]):
                    tmp = data[:,:, i:i+1]
                    tmp.shape = 1, shape[1], shape[2]
                    dset[i, 0:shape[1], :] = tmp
                    print("Saved item %d of %d" % ( i, data.shape[-1]))
            elif 0:
                #if I do not match the input and output shapes it takes ages
                #to save the images as spectra. However, it is much faster
                #when performing spectra operations.
                dset = nxData.require_dataset('data',
                               shape=shape,
                               dtype=dtype,
                               chunks=(1, shape[1], shape[2]))
                for i in range(data.shape[1]): #shape[0]
                    chunk = numpy.zeros((1, data.shape[2], data.shape[0]), dtype)
                    for k in range(data.shape[0]): #shape[2]
                        if 0:
                            tmpData = data[k:k+1]
                            for j in range(data.shape[2]): #shape[1]
                                tmpData.shape = data.shape[1], data.shape[2]
                                chunk[0, j, k] = tmpData[i, j]
                        else:
                            tmpData = data[k:k+1, i, :]
                            tmpData.shape = -1
                            chunk[0, :, k] = tmpData
                    print("Saving item %d of %d" % ( i, data.shape[1]))
                    dset[i, :, :] = chunk
            else:
                #if I do not match the input and output shapes it takes ages
                #to save the images as spectra. This is a very fast saving, but
                #the performance is awful when reading.
                if compression:
                    if DEBUG:
                        print("Saving compressed and chunked dataset")
                    dset = nxData.require_dataset('data',
                               shape=shape,
                               dtype=dtype,
                               chunks=(shape[0], shape[1], 1),
                               compression=compression)
                else:
                    if DEBUG:
                        print("Saving not compressed and not chunked dataset")
                    dset = nxData.require_dataset('data',
                               shape=shape,
                               dtype=dtype,
                               compression=None)
                for i in range(data.shape[0]):
                    tmp = data[i:(i+1),:,:]
                    tmp.shape = shape[0], shape[1], 1
                    dset[:, :, i:(i+1)] = tmp
        else:
            if compression:
                if DEBUG:
                    print("Saving compressed and chunked dataset")
                chunk1 = int(shape[1]/10)
                if chunk1 == 0:
                    chunk1 = shape[1]
                for i in [11, 10, 8, 7, 5, 4]:
                    if (shape[1] % i) == 0:
                        chunk1 = int(shape[1]/i)
                        break
                chunk2 = int(shape[2]/10)
                if chunk2 == 0:
                    chunk2 = shape[2]
                for i in [11, 10, 8, 7, 5, 4]:
                    if (shape[2] % i) == 0:
                        chunk2 = int(shape[2]/i)
                        break
                if DEBUG:
                    print("Used chunk size = (1, %d, %d)" % (chunk1, chunk2))
                dset = nxData.require_dataset('data',
                               shape=shape,
                               dtype=dtype,
                               chunks=(1, chunk1, chunk2),
                               compression=compression)
            else:
                if DEBUG:
                    print("Saving not compressed and notchunked dataset")
                dset = nxData.require_dataset('data',
                               shape=shape,
                               dtype=dtype,
                               compression=None)
            tmpData = numpy.zeros((1,data.shape[1], data.shape[2]), data.dtype)
            for i in range(data.shape[0]):
                tmpData[0:1] = data[i:i+1]
                dset[i:i+1] = tmpData[0:1]
                print("Saved item %d of %d" % (i+1, data.shape[0]))

        dset.attrs['signal'] = "1".encode('utf-8')
        if interpretation is not None:
            dset.attrs['interpretation'] = interpretation.encode('utf-8')
        for i in range(len(shape)):
            dim = numpy.arange(shape[i]).astype(numpy.float32)
            dset = nxData.require_dataset('dim_%d' % i,
                                   dim.shape,
                                   dim.dtype,
                                   dim,
                                   compression=None)
            dset.attrs['axis'] = i + 1
        nxEntry['end_time'] = getDate().encode('utf-8')
        if mode.lower() == 'nexus+':
            #create link
            g = h5py.h5g.open(hdf.fid, '/'.encode('utf-8'))
            g.link('/data/NXdata/data'.encode('utf-8'),
                   '/data/data'.encode('utf-8'),
                   h5py.h5g.LINK_HARD)
        
    elif mode.lower() == 'simplest':
        if os.path.exists(filename):
            try:
                os.remove(filename)
            except:
                raise IOError("Cannot overwrite existing file!")
        hdf = h5py.File(filename, 'a')
        if compression:
            hdf.require_dataset('data',
                           shape=shape,
                           dtype=dtype,
                           data=data,
                           chunks=(1, shape[1], shape[2]),
                           compression=compression)
        else:
            hdf.require_dataset('data',
                           shape=shape,
                           data=data,
                           dtype=dtype,
                           compression=None)
    else:
        if os.path.exists(filename):
            try:
                os.remove(filename)
            except:
                raise IOError("Cannot overwrite existing file!")
        shape = data.shape
        dtype = data.dtype
        hdf = h5py.File(filename, 'a')
        dataGroup = hdf.require_group('data')
        dataGroup.require_dataset('data',
                           shape=shape,
                           dtype=dtype,
                           data=data,
                           chunks=(1, shape[1], shape[2]))
    hdf.flush()
    hdf.close()


if __name__ == "__main__":
    a=numpy.arange(1000000.)
    a.shape = 20, 50, 1000
    save3DArrayAsHDF5(a, '/test.h5', mode='nexus+', interpretation='image')
    b = getHDF5FileInstanceAndBuffer('/test2.h5', (100,100,100))
    print("Date String = ", getDate())