/usr/share/pyshared/PyMca/EdfFile.py is in pymca 4.5.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 | #/*##########################################################################
# Copyright (C) 2004-2012 European Synchrotron Radiation Facility
#
# This file is part of the PyMCA X-ray Fluorescence Toolkit developed at
# the ESRF by the Beamline Instrumentation Software Support (BLISS) group.
#
# This toolkit is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option)
# any later version.
#
# PyMCA is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# PyMCA; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
# Suite 330, Boston, MA 02111-1307, USA.
#
# PyMCA follows the dual licensing model of Trolltech's Qt and Riverbank's PyQt
# and cannot be used as a free plugin for a non-free program.
#
# Please contact the ESRF industrial unit (industry@esrf.fr) if this license
# is a problem for you.
#############################################################################*/
"""
EdfFile.py
Generic class for Edf files manipulation.
Interface:
===========================
class EdfFile:
__init__(self,FileName)
GetNumImages(self)
def GetData(self,Index, DataType="",Pos=None,Size=None):
GetPixel(self,Index,Position)
GetHeader(self,Index)
GetStaticHeader(self,Index)
WriteImage (self,Header,Data,Append=1,DataType="",WriteAsUnsigened=0,ByteOrder="")
Edf format assumptions:
===========================
The following details were assumed for this implementation:
- Each Edf file contains a certain number of data blocks.
- Each data block represents data stored in an one, two or three-dimensional array.
- Each data block contains a header section, written in ASCII, and a data section of
binary information.
- The size of the header section in bytes is a multiple of 1024. The header is
padded with spaces (0x20). If the header is not padded to a multiple of 1024,
the file is recognized, but the output is always made in this format.
- The header section starts by '{' and finishes by '}'. It is composed by several
pairs 'keyword = value;'. The keywords are case insensitive, but the values are case
sensitive. Each pair is put in a new line (they are separeted by 0x0A). In the
end of each line, a semicolon (;) separes the pair of a comment, not interpreted.
Exemple:
{
; Exemple Header
HeaderID = EH:000001:000000:000000 ; automatically generated
ByteOrder = LowByteFirst ;
DataType = FloatValue ; 4 bytes per pixel
Size = 4000000 ; size of data section
Dim_1= 1000 ; x coordinates
Dim_2 = 1000 ; y coordinates
(padded with spaces to complete 1024 bytes)
}
- There are some fields in the header that are required for this implementation. If any of
these is missing, or inconsistent, it will be generated an error:
Size: Represents size of data block
Dim_1: size of x coordinates (Dim_2 for 2-dimentional images, and also Dim_3 for 3d)
DataType
ByteOrder
- For the written images, these fields are automatically genereted:
Size,Dim_1 (Dim_2 and Dim_3, if necessary), Byte Order, DataType, HeaderID and Image
These fields are called here "static header", and can be retrieved by the method
GetStaticHeader. Other header components are taken by GetHeader. Both methods returns
a dictionary in which the key is the keyword of the pair. When writting an image through
WriteImage method, the Header parameter should not contain the static header information,
which is automatically generated.
- The indexing of images through these functions is based just on the 0-based position in
the file, the header items HeaderID and Image are not considered for referencing the
images.
- The data section contais a number of bytes equal to the value of Size keyword. Data
section is going to be translated into an 1D, 2D or 3D Numpy Array, and accessed
through GetData method call.
"""
__author__ = 'Alexandre Gobbo (gobbo@esrf.fr)'
__version__ = '$Revision: 1.6 $'
DEBUG = 0
################################################################################
import sys
import numpy
import os.path #, tempfile, shutil
try:
from PyMca import MarCCD
MARCCD_SUPPORT = True
except ImportError:
#MarCCD
MARCCD_SUPPORT = False
try:
from PyMca import TiffIO
TIFF_SUPPORT = True
except ImportError:
#MarCCD
TIFF_SUPPORT = False
try:
from PyMca import PilatusCBF
PILATUS_CBF_SUPPORT = True
except ImportError:
PILATUS_CBF_SUPPORT = False
try:
from PyMca.FastEdf import extended_fread
CAN_USE_FASTEDF = 1
except:
CAN_USE_FASTEDF = 0
################################################################################
# constants
HEADER_BLOCK_SIZE = 1024
STATIC_HEADER_ELEMENTS = ("HeaderID", "Image", "ByteOrder", "DataType",
"Dim_1", "Dim_2", "Dim_3",
"Offset_1", "Offset_2", "Offset_3",
"Size")
STATIC_HEADER_ELEMENTS_CAPS = ("HEADERID", "IMAGE", "BYTEORDER", "DATATYPE",
"DIM_1", "DIM_2", "DIM_3",
"OFFSET_1", "OFFSET_2", "OFFSET_3",
"SIZE")
LOWER_CASE = 0
UPPER_CASE = 1
KEYS = 1
VALUES = 2
###############################################################################
class Image(object):
"""
"""
def __init__(self):
""" Constructor
"""
self.Header = {}
self.StaticHeader = {}
self.HeaderPosition = 0
self.DataPosition = 0
self.Size = 0
self.NumDim = 1
self.Dim1 = 0
self.Dim2 = 0
self.Dim3 = 0
self.DataType = ""
#for i in STATIC_HEADER_ELEMENTS: self.StaticHeader[i]=""
################################################################################
class EdfFile(object):
"""
"""
############################################################################
#Interface
def __init__(self, FileName, access=None, fastedf=None):
""" Constructor
@param FileName: Name of the file (either existing or to be created)
@type FileName: string
@param access: access mode "r" for reading (the file should exist) or
"w" for writing (if the file does not exist, it does not matter).
@type access: string
@type fastedf= True to use the fastedf module
@param fastedf= boolean
"""
self.Images = []
self.NumImages = 0
self.FileName = FileName
self.File = 0
if fastedf is None:fastedf = 0
self.fastedf = fastedf
self.ADSC = False
self.MARCCD = False
self.TIFF = False
self.PILATUS_CBF = False
self.SPE = False
if sys.byteorder == "big": self.SysByteOrder = "HighByteFirst"
else: self.SysByteOrder = "LowByteFirst"
if access is not None:
if access[0].upper() == "R":
if not os.path.isfile(self.FileName):
raise IOError("File %s not found" % FileName)
if 'b' not in access:
access += 'b'
try:
if not os.path.isfile(self.FileName):
#write access
if access is None:
#allow writing and reading
access = "ab+"
self.File = open(self.FileName, access)
self.File.seek(0, 0)
return
if 'b' not in access:
access += 'b'
self.File = open(self.FileName, access)
return
else:
if access is None:
if (os.access(self.FileName, os.W_OK)):
access = "r+b"
else:
access = "rb"
self.File = open(self.FileName, access)
self.File.seek(0, 0)
twoChars = self.File.read(2)
tiff = False
if sys.version < '3.0':
if twoChars in ["II", "MM"]:
tiff = True
elif twoChars in [eval('b"II"'), eval('b"MM"')]:
tiff = True
if tiff:
fileExtension = os.path.splitext(self.FileName)[-1]
if fileExtension.lower() in [".tif", ".tiff"] or\
sys.version > '2.9':
if not TIFF_SUPPORT:
raise IOError("TIFF support not implemented")
else:
self.TIFF = True
elif not MARCCD_SUPPORT:
if not TIFF_SUPPORT:
raise IOError("MarCCD support not implemented")
else:
self.TIFF = True
else:
self.MARCCD = True
if os.path.basename(FileName).upper().endswith('.CBF'):
if not PILATUS_CBF_SUPPORT:
raise IOError("CBF support not implemented")
if twoChars[0] != "{":
self.PILATUS_CBF = True
elif os.path.basename(FileName).upper().endswith('.SPE'):
if twoChars[0] != "$":
self.SPE = True
except:
try:
self.File.close()
except:
pass
raise IOError("EdfFile: Error opening file")
self.File.seek(0, 0)
if self.TIFF:
self._wrapTIFF()
self.File.close()
return
if self.MARCCD:
self._wrapMarCCD()
self.File.close()
return
if self.PILATUS_CBF:
self._wrapPilatusCBF()
self.File.close()
return
if self.SPE:
self._wrapSPE()
self.File.close()
return
Index = 0
line = self.File.readline()
selectedLines = [""]
if sys.version > '2.6':
selectedLines.append(eval('b""'))
while line not in selectedLines:
#decode to make sure I have character string
#str to make sure python 2.x sees it as string and not unicode
if sys.version < '3.0':
if type(line) != type(str("")):
line = "%s" % line
else:
try:
line = str(line.decode())
except UnicodeDecodeError:
try:
line = str(line.decode('utf-8'))
except UnicodeDecodeError:
try:
line = str(line.decode('latin-1'))
except UnicodeDecodeError:
line = "%s" % line
if (line.count("{\n") >= 1) or (line.count("{\r\n") >= 1):
Index = self.NumImages
self.NumImages = self.NumImages + 1
self.Images.append(Image())
# Position = self.File.tell()
if line.count("=") >= 1:
listItems = line.split("=", 1)
typeItem = listItems[0].strip()
listItems = listItems[1].split(";", 1)
valueItem = listItems[0].strip()
if (typeItem == "HEADER_BYTES") and (Index == 0):
self.ADSC = True
break
#if typeItem in self.Images[Index].StaticHeader.keys():
if typeItem.upper() in STATIC_HEADER_ELEMENTS_CAPS:
self.Images[Index].StaticHeader[typeItem] = valueItem
else:
self.Images[Index].Header[typeItem] = valueItem
if (line.count("}\n") >= 1) or (line.count("}\r") >= 1):
#for i in STATIC_HEADER_ELEMENTS_CAPS:
# if self.Images[Index].StaticHeader[i]=="":
# raise "Bad File Format"
self.Images[Index].DataPosition = self.File.tell()
#self.File.seek(int(self.Images[Index].StaticHeader["Size"]), 1)
StaticPar = SetDictCase(self.Images[Index].StaticHeader, UPPER_CASE, KEYS)
if "SIZE" in StaticPar.keys():
self.Images[Index].Size = int(StaticPar["SIZE"])
if self.Images[Index].Size <= 0:
self.NumImages = Index
line = self.File.readline()
continue
else:
raise TypeError("EdfFile: Image doesn't have size information")
if "DIM_1" in StaticPar.keys():
self.Images[Index].Dim1 = int(StaticPar["DIM_1"])
self.Images[Index].Offset1 = int(\
StaticPar.get("Offset_1", "0"))
else:
raise TypeError("EdfFile: Image doesn't have dimension information")
if "DIM_2" in StaticPar.keys():
self.Images[Index].NumDim = 2
self.Images[Index].Dim2 = int(StaticPar["DIM_2"])
self.Images[Index].Offset2 = int(\
StaticPar.get("Offset_2", "0"))
if "DIM_3" in StaticPar.keys():
self.Images[Index].NumDim = 3
self.Images[Index].Dim3 = int(StaticPar["DIM_3"])
self.Images[Index].Offset3 = int(\
StaticPar.get("Offset_3", "0"))
if "DATATYPE" in StaticPar.keys():
self.Images[Index].DataType = StaticPar["DATATYPE"]
else:
raise TypeError("EdfFile: Image doesn't have datatype information")
if "BYTEORDER" in StaticPar.keys():
self.Images[Index].ByteOrder = StaticPar["BYTEORDER"]
else:
raise TypeError("EdfFile: Image doesn't have byteorder information")
self.File.seek(self.Images[Index].Size, 1)
line = self.File.readline()
if self.ADSC:
self.File.seek(0, 0)
self.NumImages = 1
#this is a bad implementation of fabio adscimage
#please take a look at the fabio module of fable at sourceforge
infile = self.File
header_keys = []
header = {}
try:
""" read an adsc header """
line = infile.readline()
bytesread = len(line)
while '}' not in line:
if '=' in line:
(key, val) = line.split('=')
header_keys.append(key.strip())
header[key.strip()] = val.strip(' ;\n')
line = infile.readline()
bytesread = bytesread + len(line)
except:
raise Exception("Error processing adsc header")
# banned by bzip/gzip???
try:
infile.seek(int(header['HEADER_BYTES']), 0)
except TypeError:
# Gzipped does not allow a seek and read header is not
# promising to stop in the right place
infile.close()
infile = self._open(fname, "rb")
infile.read(int(header['HEADER_BYTES']))
binary = infile.read()
infile.close()
#now read the data into the array
self.Images[Index].Dim1 = int(header['SIZE1'])
self.Images[Index].Dim2 = int(header['SIZE2'])
self.Images[Index].NumDim = 2
self.Images[Index].DataType = 'UnsignedShort'
try:
self.__data = numpy.reshape(
numpy.fromstring(binary, numpy.uint16),
(self.Images[Index].Dim2, self.Images[Index].Dim1))
except ValueError:
raise IOError('Size spec in ADSC-header does not match ' + \
'size of image data field')
if 'little' in header['BYTE_ORDER']:
self.Images[Index].ByteOrder = 'LowByteFirst'
else:
self.Images[Index].ByteOrder = 'HighByteFirst'
if self.SysByteOrder.upper() != self.Images[Index].ByteOrder.upper():
self.__data = self.__data.byteswap()
self.Images[Index].ByteOrder = self.SysByteOrder
self.Images[Index].StaticHeader['Dim_1'] = self.Images[Index].Dim1
self.Images[Index].StaticHeader['Dim_2'] = self.Images[Index].Dim2
self.Images[Index].StaticHeader['Offset_1'] = 0
self.Images[Index].StaticHeader['Offset_2'] = 0
self.Images[Index].StaticHeader['DataType'] = self.Images[Index].DataType
self.__makeSureFileIsClosed()
def _wrapTIFF(self):
self._wrappedInstance = TiffIO.TiffIO(self.File, cache_length = 0, mono_output=True)
self.NumImages = self._wrappedInstance.getNumberOfImages()
if self.NumImages < 1:
return
info0 = self._wrappedInstance.getInfo(0)
#for the time being I am going to assume all the images have the same shape
data = self._wrappedInstance.getData(0)
for Index in range(self.NumImages):
info = self._wrappedInstance.getInfo(Index)
self.Images.append(Image())
self.Images[Index].Dim1 = info['nRows']
self.Images[Index].Dim2 = info['nColumns']
self.Images[Index].NumDim = 2
self.Images[Index].DataType = self.__GetDefaultEdfType__(data.dtype)
self.Images[Index].StaticHeader['Dim_1'] = self.Images[Index].Dim1
self.Images[Index].StaticHeader['Dim_2'] = self.Images[Index].Dim2
self.Images[Index].StaticHeader['Offset_1'] = 0
self.Images[Index].StaticHeader['Offset_2'] = 0
self.Images[Index].StaticHeader['DataType'] = self.Images[Index].DataType
self.Images[Index].Header.update(info)
def _wrapMarCCD(self):
mccd = MarCCD.MarCCD(self.File)
self.NumImages = 1
self.__data = mccd.getData()
self.__info = mccd.getInfo()
self.Images.append(Image())
Index = 0
self.Images[Index].Dim1 = self.__data.shape[0]
self.Images[Index].Dim2 = self.__data.shape[1]
self.Images[Index].NumDim = 2
if self.__data.dtype == numpy.uint8:
self.Images[Index].DataType = 'UnsignedByte'
elif self.__data.dtype == numpy.uint16:
self.Images[Index].DataType = 'UnsignedShort'
else:
self.Images[Index].DataType = 'UnsignedInteger'
self.Images[Index].StaticHeader['Dim_1'] = self.Images[Index].Dim1
self.Images[Index].StaticHeader['Dim_2'] = self.Images[Index].Dim2
self.Images[Index].StaticHeader['Offset_1'] = 0
self.Images[Index].StaticHeader['Offset_2'] = 0
self.Images[Index].StaticHeader['DataType'] = self.Images[Index].DataType
self.Images[Index].Header.update(self.__info)
def _wrapPilatusCBF(self):
mccd = PilatusCBF.PilatusCBF(self.File)
self.NumImages = 1
self.__data = mccd.getData()
self.__info = mccd.getInfo()
self.Images.append(Image())
Index = 0
self.Images[Index].Dim1 = self.__data.shape[0]
self.Images[Index].Dim2 = self.__data.shape[1]
self.Images[Index].NumDim = 2
if self.__data.dtype == numpy.uint8:
self.Images[Index].DataType = 'UnsignedByte'
elif self.__data.dtype == numpy.uint16:
self.Images[Index].DataType = 'UnsignedShort'
else:
self.Images[Index].DataType = 'UnsignedInteger'
self.Images[Index].StaticHeader['Dim_1'] = self.Images[Index].Dim1
self.Images[Index].StaticHeader['Dim_2'] = self.Images[Index].Dim2
self.Images[Index].StaticHeader['Offset_1'] = 0
self.Images[Index].StaticHeader['Offset_2'] = 0
self.Images[Index].StaticHeader['DataType'] = self.Images[Index].DataType
self.Images[Index].Header.update(self.__info)
def _wrapSPE(self):
if 0 and sys.version < '3.0':
self.File.seek(42)
xdim = numpy.int64(numpy.fromfile(self.File, numpy.int16, 1)[0])
self.File.seek(656)
ydim = numpy.int64(numpy.fromfile(self.File, numpy.int16, 1))
self.File.seek(4100)
self.__data = numpy.fromfile(self.File, numpy.uint16, int(xdim * ydim))
else:
import struct
self.File.seek(0)
a = self.File.read()
xdim = numpy.int64(struct.unpack('<h', a[42:44])[0])
ydim = numpy.int64(struct.unpack('<h', a[656:658])[0])
fmt = '<%dH' % int(xdim * ydim)
self.__data = numpy.array(struct.unpack(fmt, a[4100:int(4100+ int(2 * xdim * ydim))])).astype(numpy.uint16)
self.__data.shape = ydim, xdim
Index = 0
self.Images.append(Image())
self.NumImages = 1
self.Images[Index].Dim1 = ydim
self.Images[Index].Dim2 = xdim
self.Images[Index].NumDim = 2
self.Images[Index].DataType = 'UnsignedShort'
self.Images[Index].ByteOrder = 'LowByteFirst'
if self.SysByteOrder.upper() != self.Images[Index].ByteOrder.upper():
self.__data = self.__data.byteswap()
self.Images[Index].StaticHeader['Dim_1'] = self.Images[Index].Dim1
self.Images[Index].StaticHeader['Dim_2'] = self.Images[Index].Dim2
self.Images[Index].StaticHeader['Offset_1'] = 0
self.Images[Index].StaticHeader['Offset_2'] = 0
self.Images[Index].StaticHeader['DataType'] = self.Images[Index].DataType
def GetNumImages(self):
""" Returns number of images of the object (and associated file)
"""
return self.NumImages
def GetData(self, *var, **kw):
try:
self.__makeSureFileIsOpen()
return self._GetData(*var, **kw)
finally:
self.__makeSureFileIsClosed()
def _GetData(self, Index, DataType="", Pos=None, Size=None):
""" Returns numpy array with image data
Index: The zero-based index of the image in the file
DataType: The edf type of the array to be returnd
If ommited, it is used the default one for the type
indicated in the image header
Attention to the absence of UnsignedShort,
UnsignedInteger and UnsignedLong types in
Numpy Python
Default relation between Edf types and NumPy's typecodes:
SignedByte int8 b
UnsignedByte uint8 B
SignedShort int16 h
UnsignedShort uint16 H
SignedInteger int32 i
UnsignedInteger uint32 I
SignedLong int32 i
UnsignedLong uint32 I
Signed64 int64 (l in 64bit, q in 32 bit)
Unsigned64 uint64 (L in 64bit, Q in 32 bit)
FloatValue float32 f
DoubleValue float64 d
Pos: Tuple (x) or (x,y) or (x,y,z) that indicates the begining
of data to be read. If ommited, set to the origin (0),
(0,0) or (0,0,0)
Size: Tuple, size of the data to be returned as x) or (x,y) or
(x,y,z) if ommited, is the distance from Pos to the end.
If Pos and Size not mentioned, returns the whole data.
"""
fastedf = self.fastedf
if Index < 0 or Index >= self.NumImages:
raise ValueError("EdfFile: Index out of limit")
if fastedf is None:fastedf = 0
if Pos is None and Size is None:
if self.ADSC or self.MARCCD or self.PILATUS_CBF or self.SPE:
return self.__data
elif self.TIFF:
data = self._wrappedInstance.getData(Index)
return data
else:
self.File.seek(self.Images[Index].DataPosition, 0)
datatype = self.__GetDefaultNumpyType__(self.Images[Index].DataType, index=Index)
try:
datasize = self.__GetSizeNumpyType__(datatype)
except TypeError:
print("What is the meaning of this error?")
datasize = 8
if self.Images[Index].NumDim == 3:
sizeToRead = self.Images[Index].Dim1 * \
self.Images[Index].Dim2 * \
self.Images[Index].Dim3 * datasize
Data = numpy.fromstring(self.File.read(sizeToRead),
datatype)
Data = numpy.reshape(Data, (self.Images[Index].Dim3, self.Images[Index].Dim2, self.Images[Index].Dim1))
elif self.Images[Index].NumDim == 2:
sizeToRead = self.Images[Index].Dim1 * \
self.Images[Index].Dim2 * datasize
Data = numpy.fromstring(self.File.read(sizeToRead),
datatype)
#print "datatype = ",datatype
#print "Data.type = ", Data.dtype.char
#print "self.Images[Index].DataType ", self.Images[Index].DataType
#print "Data.shape",Data.shape
#print "datasize = ",datasize
#print "sizeToRead ",sizeToRead
#print "lenData = ", len(Data)
Data = numpy.reshape(Data, (self.Images[Index].Dim2, self.Images[Index].Dim1))
elif self.Images[Index].NumDim == 1:
sizeToRead = self.Images[Index].Dim1 * datasize
Data = numpy.fromstring(self.File.read(sizeToRead),
datatype)
elif self.ADSC or self.MARCCD or self.PILATUS_CBF or self.SPE:
return self.__data[Pos[1]:(Pos[1] + Size[1]),
Pos[0]:(Pos[0] + Size[0])]
elif self.TIFF:
data = self._wrappedInstance.getData(Index)
return data[Pos[1]:(Pos[1] + Size[1]),
Pos[0]:(Pos[0] + Size[0])]
elif fastedf and CAN_USE_FASTEDF:
type = self.__GetDefaultNumpyType__(self.Images[Index].DataType, index=Index)
size_pixel = self.__GetSizeNumpyType__(type)
Data = numpy.array([], type)
if self.Images[Index].NumDim == 1:
if Pos == None: Pos = (0,)
if Size == None: Size = (0,)
sizex = self.Images[Index].Dim1
Size = list(Size)
if Size[0] == 0:Size[0] = sizex - Pos[0]
self.File.seek((Pos[0] * size_pixel) + self.Images[Index].DataPosition, 0)
Data = numpy.fromstring(self.File.read(Size[0] * size_pixel), type)
elif self.Images[Index].NumDim == 2:
if Pos == None: Pos = (0, 0)
if Size == None: Size = (0, 0)
Size = list(Size)
sizex, sizey = self.Images[Index].Dim1, self.Images[Index].Dim2
if Size[0] == 0:Size[0] = sizex - Pos[0]
if Size[1] == 0:Size[1] = sizey - Pos[1]
Data = numpy.zeros([Size[1], Size[0]], type)
self.File.seek((((Pos[1] * sizex) + Pos[0]) * size_pixel) + self.Images[Index].DataPosition, 0)
extended_fread(Data, Size[0] * size_pixel , numpy.array([Size[1]]),
numpy.array([sizex * size_pixel]) , self.File)
elif self.Images[Index].NumDim == 3:
if Pos == None: Pos = (0, 0, 0)
if Size == None: Size = (0, 0, 0)
Size = list(Size)
sizex, sizey, sizez = self.Images[Index].Dim1, self.Images[Index].Dim2, self.Images[Index].Dim3
if Size[0] == 0:Size[0] = sizex - Pos[0]
if Size[1] == 0:Size[1] = sizey - Pos[1]
if Size[2] == 0:Size[2] = sizez - Pos[2]
Data = numpy.zeros([Size[2], Size[1], Size[0]], type)
self.File.seek(((((Pos[2] * sizey + Pos[1]) * sizex) + Pos[0]) * size_pixel) + self.Images[Index].DataPosition, 0)
extended_fread(Data, Size[0] * size_pixel , numpy.array([Size[2], Size[1]]),
numpy.array([ sizey * sizex * size_pixel , sizex * size_pixel]) , self.File)
else:
if fastedf:
print("I could not use fast routines")
type = self.__GetDefaultNumpyType__(self.Images[Index].DataType, index=Index)
size_pixel = self.__GetSizeNumpyType__(type)
Data = numpy.array([], type)
if self.Images[Index].NumDim == 1:
if Pos == None: Pos = (0,)
if Size == None: Size = (0,)
sizex = self.Images[Index].Dim1
Size = list(Size)
if Size[0] == 0:Size[0] = sizex - Pos[0]
self.File.seek((Pos[0] * size_pixel) + self.Images[Index].DataPosition, 0)
Data = numpy.fromstring(self.File.read(Size[0] * size_pixel), type)
elif self.Images[Index].NumDim == 2:
if Pos == None: Pos = (0, 0)
if Size == None: Size = (0, 0)
Size = list(Size)
sizex, sizey = self.Images[Index].Dim1, self.Images[Index].Dim2
if Size[0] == 0:Size[0] = sizex - Pos[0]
if Size[1] == 0:Size[1] = sizey - Pos[1]
#print len(range(Pos[1],Pos[1]+Size[1])), "LECTURES OF ", Size[0], "POINTS"
#print "sizex = ", sizex, "sizey = ", sizey
Data = numpy.zeros((Size[1], Size[0]), type)
dataindex = 0
for y in range(Pos[1], Pos[1] + Size[1]):
self.File.seek((((y * sizex) + Pos[0]) * size_pixel) + self.Images[Index].DataPosition, 0)
line = numpy.fromstring(self.File.read(Size[0] * size_pixel), type)
Data[dataindex, :] = line[:]
#Data=numpy.concatenate((Data,line))
dataindex += 1
#print "DataSize = ",Data.shape
#print "Requested reshape = ",Size[1],'x',Size[0]
#Data = numpy.reshape(Data, (Size[1],Size[0]))
elif self.Images[Index].NumDim == 3:
if Pos == None: Pos = (0, 0, 0)
if Size == None: Size = (0, 0, 0)
Size = list(Size)
sizex, sizey, sizez = self.Images[Index].Dim1, self.Images[Index].Dim2, self.Images[Index].Dim3
if Size[0] == 0:Size[0] = sizex - Pos[0]
if Size[1] == 0:Size[1] = sizey - Pos[1]
if Size[2] == 0:Size[2] = sizez - Pos[2]
for z in range(Pos[2], Pos[2] + Size[2]):
for y in range(Pos[1], Pos[1] + Size[1]):
self.File.seek(((((z * sizey + y) * sizex) + Pos[0]) * size_pixel) + self.Images[Index].DataPosition, 0)
line = numpy.fromstring(self.File.read(Size[0] * size_pixel), type)
Data = numpy.concatenate((Data, line))
Data = numpy.reshape(Data, (Size[2], Size[1], Size[0]))
if self.SysByteOrder.upper() != self.Images[Index].ByteOrder.upper():
Data = Data.byteswap()
if DataType != "":
Data = self.__SetDataType__ (Data, DataType)
return Data
def GetPixel(self, Index, Position):
""" Returns double value of the pixel, regardless the format of the array
Index: The zero-based index of the image in the file
Position: Tuple with the coordinete (x), (x,y) or (x,y,z)
"""
if Index < 0 or Index >= self.NumImages:
raise ValueError("EdfFile: Index out of limit")
if len(Position) != self.Images[Index].NumDim:
raise ValueError("EdfFile: coordinate with wrong dimension ")
size_pixel = self.__GetSizeNumpyType__(self.__GetDefaultNumpyType__(self.Images[Index].DataType), index=Index)
offset = Position[0] * size_pixel
if self.Images[Index].NumDim > 1:
size_row = size_pixel * self.Images[Index].Dim1
offset = offset + (Position[1] * size_row)
if self.Images[Index].NumDim == 3:
size_img = size_row * self.Images[Index].Dim2
offset = offset + (Position[2] * size_img)
self.File.seek(self.Images[Index].DataPosition + offset, 0)
Data = numpy.fromstring(self.File.read(size_pixel), self.__GetDefaultNumpyType__(self.Images[Index].DataType, index=Index))
if self.SysByteOrder.upper() != self.Images[Index].ByteOrder.upper():
Data = Data.byteswap()
Data = self.__SetDataType__ (Data, "DoubleValue")
return Data[0]
def GetHeader(self, Index):
""" Returns dictionary with image header fields.
Does not include the basic fields (static) defined by data shape,
type and file position. These are get with GetStaticHeader
method.
Index: The zero-based index of the image in the file
"""
if Index < 0 or Index >= self.NumImages:
raise ValueError("Index out of limit")
#return self.Images[Index].Header
ret = {}
for i in self.Images[Index].Header.keys():
ret[i] = self.Images[Index].Header[i]
return ret
def GetStaticHeader(self, Index):
""" Returns dictionary with static parameters
Data format and file position dependent information
(dim1,dim2,size,datatype,byteorder,headerId,Image)
Index: The zero-based index of the image in the file
"""
if Index < 0 or Index >= self.NumImages:
raise ValueError("Index out of limit")
#return self.Images[Index].StaticHeader
ret = {}
for i in self.Images[Index].StaticHeader.keys():
ret[i] = self.Images[Index].StaticHeader[i]
return ret
def WriteImage(self, *var, **kw):
try:
self.__makeSureFileIsOpen()
return self._WriteImage(*var, **kw)
finally:
self.__makeSureFileIsClosed()
def _WriteImage (self, Header, Data, Append=1, DataType="", ByteOrder=""):
""" Writes image to the file.
Header: Dictionary containing the non-static header
information (static information is generated
according to position of image and data format
Append: If equals to 0, overwrites the file. Otherwise, appends
to the end of the file
DataType: The data type to be saved to the file:
SignedByte
UnsignedByte
SignedShort
UnsignedShort
SignedInteger
UnsignedInteger
SignedLong
UnsignedLong
FloatValue
DoubleValue
Default: according to Data array typecode:
1: SignedByte
b: UnsignedByte
s: SignedShort
w: UnsignedShort
i: SignedInteger
l: SignedLong
u: UnsignedLong
f: FloatValue
d: DoubleValue
ByteOrder: Byte order of the data in file:
HighByteFirst
LowByteFirst
Default: system's byte order
"""
if Append == 0:
self.File.truncate(0)
self.Images = []
self.NumImages = 0
Index = self.NumImages
self.NumImages = self.NumImages + 1
self.Images.append(Image())
#self.Images[Index].StaticHeader["Dim_1"] = "%d" % Data.shape[1]
#self.Images[Index].StaticHeader["Dim_2"] = "%d" % Data.shape[0]
if len(Data.shape) == 1:
self.Images[Index].Dim1 = Data.shape[0]
self.Images[Index].StaticHeader["Dim_1"] = "%d" % self.Images[Index].Dim1
self.Images[Index].Size = (Data.shape[0] * \
self.__GetSizeNumpyType__(Data.dtype))
elif len(Data.shape) == 2:
self.Images[Index].Dim1 = Data.shape[1]
self.Images[Index].Dim2 = Data.shape[0]
self.Images[Index].StaticHeader["Dim_1"] = "%d" % self.Images[Index].Dim1
self.Images[Index].StaticHeader["Dim_2"] = "%d" % self.Images[Index].Dim2
self.Images[Index].Size = (Data.shape[0] * Data.shape[1] * \
self.__GetSizeNumpyType__(Data.dtype))
self.Images[Index].NumDim = 2
elif len(Data.shape) == 3:
self.Images[Index].Dim1 = Data.shape[2]
self.Images[Index].Dim2 = Data.shape[1]
self.Images[Index].Dim3 = Data.shape[0]
self.Images[Index].StaticHeader["Dim_1"] = "%d" % self.Images[Index].Dim1
self.Images[Index].StaticHeader["Dim_2"] = "%d" % self.Images[Index].Dim2
self.Images[Index].StaticHeader["Dim_3"] = "%d" % self.Images[Index].Dim3
self.Images[Index].Size = (Data.shape[0] * Data.shape[1] * Data.shape[2] * \
self.__GetSizeNumpyType__(Data.dtype))
self.Images[Index].NumDim = 3
elif len(Data.shape) > 3:
raise TypeError("EdfFile: Data dimension not suported")
if DataType == "":
self.Images[Index].DataType = self.__GetDefaultEdfType__(Data.dtype)
else:
self.Images[Index].DataType = DataType
Data = self.__SetDataType__ (Data, DataType)
if ByteOrder == "":
self.Images[Index].ByteOrder = self.SysByteOrder
else:
self.Images[Index].ByteOrder = ByteOrder
self.Images[Index].StaticHeader["Size"] = "%d" % self.Images[Index].Size
self.Images[Index].StaticHeader["Image"] = Index + 1
self.Images[Index].StaticHeader["HeaderID"] = "EH:%06d:000000:000000" % self.Images[Index].StaticHeader["Image"]
self.Images[Index].StaticHeader["ByteOrder"] = self.Images[Index].ByteOrder
self.Images[Index].StaticHeader["DataType"] = self.Images[Index].DataType
self.Images[Index].Header = {}
self.File.seek(0, 2)
StrHeader = "{\n"
for i in STATIC_HEADER_ELEMENTS:
if i in self.Images[Index].StaticHeader.keys():
StrHeader = StrHeader + ("%s = %s ;\n" % (i , self.Images[Index].StaticHeader[i]))
for i in Header.keys():
StrHeader = StrHeader + ("%s = %s ;\n" % (i, Header[i]))
self.Images[Index].Header[i] = Header[i]
newsize = (((len(StrHeader) + 1) / HEADER_BLOCK_SIZE) + 1) * HEADER_BLOCK_SIZE - 2
newsize = int(newsize)
StrHeader = StrHeader.ljust(newsize)
StrHeader = StrHeader + "}\n"
self.Images[Index].HeaderPosition = self.File.tell()
self.File.write(StrHeader.encode())
self.Images[Index].DataPosition = self.File.tell()
#if self.Images[Index].StaticHeader["ByteOrder"] != self.SysByteOrder:
if self.Images[Index].ByteOrder.upper() != self.SysByteOrder.upper():
self.File.write((Data.byteswap()).tostring())
else:
self.File.write(Data.tostring())
############################################################################
#Internal Methods
def __makeSureFileIsOpen(self):
if DEBUG:
print("Making sure file is open")
if self.ADSC or self.MARCCD or self.PILATUS_CBF or self.SPE:
if DEBUG:
print("Special case. Image is buffered")
return
if self.File in [0, None]:
if DEBUG:
print("File is None")
elif self.File.closed:
if DEBUG:
print("Reopening closed file")
accessMode = self.File.mode
fileName = self.File.name
newFile = open(fileName, accessMode)
self.File = newFile
return
def __makeSureFileIsClosed(self):
if DEBUG:
print("Making sure file is closed")
if self.ADSC or self.MARCCD or self.PILATUS_CBF or self.SPE:
if DEBUG:
print("Special case. Image is buffered")
return
if self.File in [0, None]:
if DEBUG:
print("File is None")
elif not self.File.closed:
if DEBUG:
print("Closing file")
self.File.close()
return
def __GetDefaultNumpyType__(self, EdfType, index=None):
""" Internal method: returns NumPy type according to Edf type
"""
return self.GetDefaultNumpyType(EdfType, index)
def __GetDefaultEdfType__(self, NumpyType):
""" Internal method: returns Edf type according Numpy type
"""
if NumpyType in ["b", numpy.int8]: return "SignedByte"
elif NumpyType in ["B", numpy.uint8]: return "UnsignedByte"
elif NumpyType in ["h", numpy.int16]: return "SignedShort"
elif NumpyType in ["H", numpy.uint16]: return "UnsignedShort"
elif NumpyType in ["i", numpy.int32]: return "SignedInteger"
elif NumpyType in ["I", numpy.uint32]: return "UnsignedInteger"
elif NumpyType == "l":
if sys.platform == 'linux2':
return "Signed64"
else:
return "SignedLong"
elif NumpyType == "L":
if sys.platform == 'linux2':
return "Unsigned64"
else:
return "UnsignedLong"
elif NumpyType == numpy.int64:
return "Signed64"
elif NumpyType == numpy.uint64:
return "Unsigned64"
elif NumpyType in ["f", numpy.float32]:
return "FloatValue"
elif NumpyType in ["d", numpy.float64]:
return "DoubleValue"
else:
raise TypeError("unknown NumpyType %s" % NumpyType)
def __GetSizeNumpyType__(self, NumpyType):
""" Internal method: returns size of NumPy's Array Types
"""
if NumpyType in ["b", numpy.int8]: return 1
elif NumpyType in ["B", numpy.uint8]: return 1
elif NumpyType in ["h", numpy.int16]: return 2
elif NumpyType in ["H", numpy.uint16]: return 2
elif NumpyType in ["i", numpy.int32]: return 4
elif NumpyType in ["I", numpy.uint32]: return 4
elif NumpyType == "l":
if sys.platform == 'linux2':
return 8 #64 bit
else:
return 4 #32 bit
elif NumpyType == "L":
if sys.platform == 'linux2':
return 8 #64 bit
else:
return 4 #32 bit
elif NumpyType in ["f", numpy.float32]: return 4
elif NumpyType in ["d", numpy.float64]: return 8
elif NumpyType == "Q": return 8 #unsigned 64 in 32 bit
elif NumpyType == "q": return 8 #signed 64 in 32 bit
elif NumpyType == numpy.uint64: return 8
elif NumpyType == numpy.int64: return 8
else:
raise TypeError("unknown NumpyType %s" % NumpyType)
def __SetDataType__ (self, Array, DataType):
""" Internal method: array type convertion
"""
# AVOID problems not using FromEdfType= Array.dtype.char
FromEdfType = Array.dtype
ToEdfType = self.__GetDefaultNumpyType__(DataType)
if ToEdfType != FromEdfType:
aux = Array.astype(self.__GetDefaultNumpyType__(DataType))
return aux
return Array
def __del__(self):
try:
self.__makeSureFileIsClosed()
except:
pass
def GetDefaultNumpyType(self, EdfType, index=None):
""" Returns NumPy type according Edf type
"""
if index is None:return GetDefaultNumpyType(EdfType)
EdfType = EdfType.upper()
if EdfType in ['SIGNED64'] :return numpy.int64
if EdfType in ['UNSIGNED64']:return numpy.uint64
if EdfType in ["SIGNEDLONG", "UNSIGNEDLONG"]:
dim1 = 1
dim2 = 1
dim3 = 1
if hasattr(self.Images[index], "Dim1"):
dim1 = self.Images[index].Dim1
if hasattr(self.Images[index], "Dim2"):
dim2 = self.Images[index].Dim2
if dim2 <= 0: dim2 = 1
if hasattr(self.Images[index], "Dim3"):
dim3 = self.Images[index].Dim3
if dim3 <= 0: dim3 = 1
if hasattr(self.Images[index], "Size"):
size = self.Images[index].Size
if size / (dim1 * dim2 * dim3) == 8:
if EdfType == "UNSIGNEDLONG":
return numpy.uint64
else:
return numpy.int64
if EdfType == "UNSIGNEDLONG":
return numpy.uint32
else:
return numpy.int32
return GetDefaultNumpyType(EdfType)
def GetDefaultNumpyType(EdfType):
""" Returns NumPy type according Edf type
"""
EdfType = EdfType.upper()
if EdfType == "SIGNEDBYTE": return numpy.int8 # "b"
elif EdfType == "UNSIGNEDBYTE": return numpy.uint8 # "B"
elif EdfType == "SIGNEDSHORT": return numpy.int16 # "h"
elif EdfType == "UNSIGNEDSHORT": return numpy.uint16 # "H"
elif EdfType == "SIGNEDINTEGER": return numpy.int32 # "i"
elif EdfType == "UNSIGNEDINTEGER": return numpy.uint32 # "I"
elif EdfType == "SIGNEDLONG": return numpy.int32 # "i" #ESRF acquisition is made in 32bit
elif EdfType == "UNSIGNEDLONG": return numpy.uint32 # "I" #ESRF acquisition is made in 32bit
elif EdfType == "SIGNED64": return numpy.int64 # "l"
elif EdfType == "UNSIGNED64": return numpy.uint64 # "L"
elif EdfType == "FLOATVALUE": return numpy.float32 # "f"
elif EdfType == "FLOAT": return numpy.float32 # "f"
elif EdfType == "DOUBLEVALUE": return numpy.float64 # "d"
else: raise TypeError("unknown EdfType %s" % EdfType)
def SetDictCase(Dict, Case, Flag):
""" Returns dictionary with keys and/or values converted into upper or lowercase
Dict: input dictionary
Case: LOWER_CASE, UPPER_CASE
Flag: KEYS, VALUES or KEYS | VALUES
"""
newdict = {}
for i in Dict.keys():
newkey = i
newvalue = Dict[i]
if Flag & KEYS:
if Case == LOWER_CASE: newkey = newkey.lower()
else: newkey = newkey.upper()
if Flag & VALUES:
if Case == LOWER_CASE: newvalue = newvalue.lower()
else: newvalue = newvalue.upper()
newdict[newkey] = newvalue
return newdict
def GetRegion(Arr, Pos, Size):
"""Returns array with refion of Arr.
Arr must be 1d, 2d or 3d
Pos and Size are tuples in the format (x) or (x,y) or (x,y,z)
Both parameters must have the same size as the dimention of Arr
"""
Dim = len(Arr.shape)
if len(Pos) != Dim: return None
if len(Size) != Dim: return None
if (Dim == 1):
SizeX = Size[0]
if SizeX == 0: SizeX = Arr.shape[0] - Pos[0]
ArrRet = numpy.take(Arr, range(Pos[0], Pos[0] + SizeX))
elif (Dim == 2):
SizeX = Size[0]
SizeY = Size[1]
if SizeX == 0: SizeX = Arr.shape[1] - Pos[0]
if SizeY == 0: SizeY = Arr.shape[0] - Pos[1]
ArrRet = numpy.take(Arr, range(Pos[1], Pos[1] + SizeY))
ArrRet = numpy.take(ArrRet, range(Pos[0], Pos[0] + SizeX), 1)
elif (Dim == 3):
SizeX = Size[0]
SizeY = Size[1]
SizeZ = Size[2]
if SizeX == 0: SizeX = Arr.shape[2] - Pos[0]
if SizeY == 0: SizeX = Arr.shape[1] - Pos[1]
if SizeZ == 0: SizeZ = Arr.shape[0] - Pos[2]
ArrRet = numpy.take(Arr, range(Pos[2], Pos[2] + SizeZ))
ArrRet = numpy.take(ArrRet, range(Pos[1], Pos[1] + SizeY), 1)
ArrRet = numpy.take(ArrRet, range(Pos[0], Pos[0] + SizeX), 2)
else:
ArrRet = None
return ArrRet
#EXEMPLE CODE:
if __name__ == "__main__":
if 1:
# import os
a = numpy.zeros((5, 10))
for i in range(5):
for j in range(10):
a[i, j] = 10 * i + j
edf = EdfFile("armando.edf", access="ab+")
edf.WriteImage({}, a)
del edf #force to close the file
inp = EdfFile("armando.edf")
b = inp.GetData(0)
out = EdfFile("armando2.edf")
out.WriteImage({}, b)
del out #force to close the file
inp2 = EdfFile("armando2.edf")
c = inp2.GetData(0)
print("A SHAPE = ", a.shape)
print("B SHAPE = ", b.shape)
print("C SHAPE = ", c.shape)
for i in range(5):
print("A", a[i, :])
print("B", b[i, :])
print("C", c[i, :])
x = numpy.arange(100)
x.shape = 5, 20
for item in ["SignedByte", "UnsignedByte",
"SignedShort", "UnsignedShort",
"SignedLong", "UnsignedLong",
"Signed64", "Unsigned64",
"FloatValue", "DoubleValue"]:
fname = item + ".edf"
if os.path.exists(fname):
os.remove(fname)
towrite = EdfFile(fname)
towrite.WriteImage({}, x, DataType=item, Append=0)
sys.exit(0)
#Creates object based on file exe.edf
exe = EdfFile("images/test_image.edf")
x = EdfFile("images/test_getdata.edf")
#Gets unsigned short data, storing in an signed long
arr = exe.GetData(0, Pos=(100, 200), Size=(200, 400))
x.WriteImage({}, arr, 0)
arr = exe.GetData(0, Pos=(100, 200))
x.WriteImage({}, arr)
arr = exe.GetData(0, Size=(200, 400))
x.WriteImage({}, arr)
arr = exe.GetData(0)
x.WriteImage({}, arr)
sys.exit()
#Creates object based on file exe.edf
exe = EdfFile("images/.edf")
#Creates long array , filled with 0xFFFFFFFF(-1)
la = numpy.zeros((100, 100))
la = la - 1
#Creates a short array, filled with 0xFFFF
sa = numpy.zeros((100, 100))
sa = sa + 0xFFFF
sa = sa.astype("s")
#Writes long array, initializing file (append=0)
exe.WriteImage({}, la, 0, "")
#Appends short array with new header items
exe.WriteImage({'Name': 'Alexandre', 'Date': '16/07/2001'}, sa)
#Appends short array, in Edf type unsigned
exe.WriteImage({}, sa, DataType="UnsignedShort")
#Appends short array, in Edf type unsigned
exe.WriteImage({}, sa, DataType="UnsignedLong")
#Appends long array as a double, considering unsigned
exe.WriteImage({}, la, DataType="DoubleValue", WriteAsUnsigened=1)
#Gets unsigned short data, storing in an signed long
ushort = exe.GetData(2, "SignedLong")
#Makes an operation
ushort = ushort - 0x10
#Saves Result as signed long
exe.WriteImage({}, ushort)
#Saves in the original format (unsigned short)
OldHeader = exe.GetStaticHeader(2)
exe.WriteImage({}, ushort, 1, OldHeader["DataType"])
|