This file is indexed.

/usr/share/pyshared/PyMca/HDF5Stack1D.py is in pymca 4.5.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
#/*##########################################################################
# Copyright (C) 2004-2012 European Synchrotron Radiation Facility
#
# This file is part of the PyMCA X-ray Fluorescence Toolkit developed at
# the ESRF by the Beamline Instrumentation Software Support (BLISS) group.
#
# This toolkit is free software; you can redistribute it and/or modify it 
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option) 
# any later version.
#
# PyMCA is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# PyMCA; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
# Suite 330, Boston, MA 02111-1307, USA.
#
# PyMCA follows the dual licensing model of Trolltech's Qt and Riverbank's PyQt
# and cannot be used as a free plugin for a non-free program. 
#
# Please contact the ESRF industrial unit (industry@esrf.fr) if this license 
# is a problem for you.
#############################################################################*/
import posixpath
import h5py
try:
    from PyMca import DataObject
except:
    import DataObject
try:
    from PyMca import NexusDataSource
except:
    import NexusDataSource
import posixpath
import numpy
DEBUG = 0    
SOURCE_TYPE = "HDF5Stack1D"

class HDF5Stack1D(DataObject.DataObject):
    def __init__(self, filelist, selection,
                       scanlist=None,
                       dtype=None):
        DataObject.DataObject.__init__(self)

        #the data type of the generated stack
        self.__dtype0 = dtype 
        self.__dtype  = dtype

        if filelist is not None:
            if selection is not None:
                self.loadFileList(filelist, selection, scanlist)

    def loadFileList(self, filelist, selection, scanlist=None):
        """
        loadFileList(self, filelist, y, scanlist=None, monitor=None, x=None)
        filelist is the list of file names belonging to the stack
        selection is a dictionary with the keys x, y, m.
        x        is the path to the x data (the channels) in the spectrum,
                 without the first level "directory". It is unused (for now).
        y        is the path to the 1D data (the counts) in the spectrum,
                 without the first level "directory"
        m        is the path to the normalizing data (I0 or whatever)
                 without the first level "directory".
        scanlist is the list of first level "directories" containing the 1D data
                 Example: The actual path has the form:
                 /whatever1/whatever2/counts
                 That means scanlist = ["/whatever1"]
                 and               selection['y'] = "/whatever2/counts"
        """
        # all the files in the same source
        hdfStack = NexusDataSource.NexusDataSource(filelist)

        #if there is more than one file, it is assumed all the files have
        #the same structure.
        tmpHdf = hdfStack._sourceObjectList[0]
        entryNames = []
        for key in tmpHdf["/"].keys():
            if isinstance(tmpHdf["/"+key], h5py.Group):
                entryNames.append(key)

        #built the selection in terms of HDF terms
        #for the time being, the x selection will be ignored but not the
        #monitor and only one y is taken
        ySelection = selection['y']
        if type(ySelection) == type([]):
            ySelection = ySelection[0]
        mSelection = selection['m']
        if type(mSelection) == type([]):
            if len(mSelection):
                mSelection = mSelection[0]
            else:
                mSelection = None
        else:
            mSelection = None

        #deal with the pathological case where the scanlist corresponds to a selected top level dataset
        if len(entryNames) == 0:
            if scanlist is not None:
                if len(scanlist) == 1:
                    if scanlist[0] == ySelection:
                        scanlist = None
            
        if scanlist in [None, []]:
            #if the scanlist is None, it is assumed we are interested on all
            #the scans containing the selection, not that all the scans
            #contain the selection.
            scanlist = []
            if 0:
                JUST_KEYS = False
                #expect same entry names in the files
                for entry in entryNames:
                    path = "/"+entry + ySelection
                    dirname = posixpath.dirname(path)
                    base = posixpath.basename(path)
                    try:
                        if base in tmpHdf[dirname].keys():                        
                            scanlist.append(entry)
                    except:
                        pass
            else:
                JUST_KEYS = True
                #expect same structure in the files
                if len(entryNames):
                    i = 0
                    for entry in entryNames:
                        i += 1
                        path = "/"+entry + ySelection
                        dirname = posixpath.dirname(path)
                        base = posixpath.basename(path)
                        try:
                            if base in tmpHdf[dirname].keys():                        
                                scanlist.append("1.%d" % i)
                        except:
                            pass
                    if not len(scanlist):
                        path = "/" + ySelection
                        dirname = posixpath.dirname(path)
                        base = posixpath.basename(path)
                        try:
                            if base in tmpHdf[dirname].keys():
                                JUST_KEYS = False
                                scanlist.append("")
                        except:
                            #it will crash later on
                            pass                        
                else:
                    JUST_KEYS = False
                    scanlist.append("")
        else:
            try:
                number, order = [int(x) for x in scanlist[0].split(".")]
                JUST_KEYS = True
            except:
                JUST_KEYS = False
            if not JUST_KEYS:
                for scan in scanlist:
                    if scan.startswith("/"):
                        t = scan[1:]
                    else:
                        t = scan
                    if t not in entryNames:
                        raise ValueError("Entry %s not in file" % scan)
        
        nFiles = len(filelist)
        nScans = len(scanlist)
        if JUST_KEYS:
            if not nScans:
                raise IOError("No entry contains the required data")

        #Now is to decide the number of mca ...
        #I assume all the scans contain the same number of mca
        if JUST_KEYS:
            path = "/" + entryNames[int(scanlist[0].split(".")[-1])-1] + ySelection
            if mSelection is not None:
                mpath = "/" + entryNames[int(scanlist[0].split(".")[-1])-1] + mSelection
        else:
            path = scanlist[0] +  ySelection
            if mSelection is not None:
                mpath = scanlist[0] + mSelection
        yDataset = tmpHdf[path]

        if self.__dtype is None:
            self.__dtype = yDataset.dtype

        #figure out the shape of the stack
        shape = yDataset.shape
        mcaIndex = selection.get('index', len(shape)-1)
        if mcaIndex == -1:
            mcaIndex = len(shape) - 1
        dim0, dim1, mcaDim = self.getDimensions(nFiles, nScans, shape,
                                                index=mcaIndex)
        try:
            if self.__dtype in [numpy.float32, numpy.int32]:
                bytefactor = 4
            elif self.__dtype in [numpy.int16, numpy.uint16]:
                bytefactor = 2
            elif self.__dtype in [numpy.int8, numpy.uint8]:
                bytefactor = 1
            else:
                bytefactor = 8

            neededMegaBytes = nFiles * dim0 * dim1 * mcaDim * bytefactor/(1024*1024.)
            if (neededMegaBytes > 2000) and (nFiles == 1) and (len(shape) == 3):
                if self.__dtype0 is None:
                    if (bytefactor == 8) and (neededMegaBytes <4000):
                        #try reading as float32
                        self.__dtype = numpy.float32
                    else:
                        raise MemoryError("Force dynamic loading")
                else:
                    raise MemoryError("Force dynamic loading")
            self.data = numpy.zeros((dim0, dim1, mcaDim), self.__dtype)
            DONE = False
        except (MemoryError, ValueError):
            #some versions report ValueError instead of MemoryError
            if (nFiles == 1) and (len(shape) == 3):
                print("Attempting dynamic loading")
                self.data = yDataset
                if mSelection is not None:
                    mDataset = tmpHdf[mpath]
                    self.monitor = mDataset
                if h5py.version.version < '2.0':
                    #prevent automatic closing keeping a reference
                    #to the open file
                    self._fileReference = hdfStack
                DONE = True
            else:
                #what to do if the number of dimensions is only 2?
                raise
        
        if not DONE:
            self.info["McaIndex"] = 2
            n = 0
            i_idx = dim0 * dim1

            if dim0 == 1:
                self.onBegin(dim1)
            else:
                self.onBegin(dim0)
            self.incrProgressBar=0
            for hdf in hdfStack._sourceObjectList:
                entryNames = list(hdf["/"].keys())
                for scan in scanlist:
                    if JUST_KEYS:
                        entryName = entryNames[int(scan.split(".")[-1])-1]
                        path = entryName + ySelection
                        if mSelection is not None:
                            mpath = entryName + mSelection
                            mDataset = hdf[mpath].value
                    else:
                        path = scan + ySelection
                        if mSelection is not None:
                            mpath = scan + mSelection
                            mDataset = hdf[mpath].value
                    try:
                        yDataset = hdf[path]
                        tmpShape = yDataset.shape
                        totalBytes = numpy.ones((1,), yDataset.dtype).itemsize
                        for nItems in tmpShape:
                            totalBytes *= nItems
                        if (totalBytes/(1024.*1024.)) > 500:
                            #read from disk
                            IN_MEMORY = False
                        else:
                            #read the data into memory
                            yDataset = hdf[path].value 
                            IN_MEMORY = True
                    except (MemoryError, ValueError):
                        yDataset = hdf[path]
                        IN_MEMORY = False
                    nMcaInYDataset = 1
                    for dim in yDataset.shape:
                        nMcaInYDataset *= dim
                    nMcaInYDataset = int(nMcaInYDataset/mcaDim)
                    if mcaIndex != 0:
                        if IN_MEMORY:
                            yDataset.shape = -1, mcaDim
                        if mSelection is not None:
                            case = -1
                            nMonitorData = 1
                            for  v in mDataset.shape:
                                nMonitorData *= v
                            if nMonitorData == nMcaInYDataset:
                                mDataset.shape = nMcaInYDataset
                                case = 0
                            elif nMonitorData == (nMcaInYDataset * mcaDim):
                                case = 1
                                mDataset.shape = nMcaInYDataset, mcaDim
                            if case == -1:
                                raise ValueError(\
                                    "I do not know how to handle this monitor data")
                        if (len(yDataset.shape) == 3) and\
                           (dim1 == yDataset.shape[1]):
                            mca = 0
                            deltaI = int(yDataset.shape[1]/dim1)
                            for ii in range(yDataset.shape[0]):
                                i = int(n/dim1)
                                yData = yDataset[ii:(ii+1)]
                                yData.shape = -1, mcaDim
                                if mSelection is not None:
                                    if case == 0:
                                        mData = numpy.outer(mDataset[mca:(mca+dim1)],
                                                            numpy.ones((mcaDim)))
                                        self.data[i, :, :] = yData/mData
                                    elif case == 1:
                                        mData = mDataset[mca:(mca+dim1), :]
                                        mData.shape = -1, mcaDim
                                        self.data[i, :, :]  = yData/mData
                                else:
                                    self.data[i:(i+deltaI), :] = yData
                                n += yDataset.shape[1]
                                mca += dim1
                        else:
                            for mca in range(nMcaInYDataset):
                                i = int(n/dim1)
                                j = n % dim1
                                if len(yDataset.shape) == 3:
                                    ii = int(mca/yDataset.shape[1])
                                    jj = mca % yDataset.shape[1]
                                    yData = yDataset[ii, jj]
                                elif len(yDataset.shape) == 2:
                                    yData = yDataset[mca,:]
                                elif len(yDataset.shape) == 1:
                                    yData = yDataset
                                if mSelection is not None:
                                    if case == 0:
                                        self.data[i, j, :] = yData/mDataset[mca]
                                    elif case == 1:
                                        self.data[i, j, :]  = yData/mDataset[mca, :]
                                else:
                                    self.data[i, j, :] = yData
                                n += 1
                    else:
                        if mSelection is not None:
                            case = -1
                            nMonitorData = 1
                            for  v in mDataset.shape:
                                nMonitorData *= v
                            if nMonitorData == yDataset.shape[0]:
                                case = 3
                                mDataset.shape = yDataset.shape[0]
                            elif nMonitorData == nMcaInYDataset:
                                mDataset.shape = nMcaInYDataset
                                case = 0
                            #elif nMonitorData == (yDataset.shape[1] * yDataset.shape[2]):
                            #    case = 1
                            #    mDataset.shape = yDataset.shape[1], yDataset.shape[2]
                            if case == -1:
                                raise ValueError(\
                                    "I do not know how to handle this monitor data")
                        if IN_MEMORY:
                            yDataset.shape = mcaDim, -1
                        if len(yDataset.shape) != 3:
                            for mca in range(nMcaInYDataset):
                                i = int(n/dim1)
                                j = n % dim1
                                if len(yDataset.shape) == 3:
                                    ii = int(mca/yDataset.shape[2])
                                    jj = mca % yDataset.shape[2]
                                    yData = yDataset[:, ii, jj]
                                elif len(yDataset.shape) == 2:
                                    yData = yDataset[:, mca]
                                elif len(yDataset.shape) == 1:
                                    yData = yDataset[:]                            
                                if mSelection is not None:
                                    if case == 0:
                                        self.data[i, j, :] = yData/mDataset[mca]
                                    elif case == 1:
                                        self.data[i, j, :]  = yData/mDataset[:, mca]
                                    elif case == 3:
                                        self.data[i, j, :]  = yData/mDataset
                                else:
                                    self.data[i, j, :] = yData
                                n += 1
                        else:
                            #stack of images to be read as MCA
                            for nImage in range(yDataset.shape[0]):
                                tmp = yDataset[nImage:(nImage+1)]
                                if len(tmp.shape) == 3:
                                    i = int(n/dim1)
                                    j = n % dim1
                                    if 0:
                                        #this loop is extremely SLOW!!!(and useless)
                                        for ii in range(tmp.shape[1]):
                                            for jj in range(tmp.shape[2]):
                                                self.data[i+ii, j+jj, nImage] = tmp[0, ii, jj]
                                    else:
                                        self.data[i:i+tmp.shape[1],
                                                  j:j+tmp.shape[2], nImage] = tmp[0]
                            if mSelection is not None:
                                for mca in range(yDataset.shape[0]):
                                    i = int(n/dim1)
                                    j = n % dim1
                                    yData = self.data[i, j, :]
                                    if case == 0:
                                        self.data[i, j, :] = yData/mDataset[mca]
                                    elif case == 1:
                                        self.data[i, j, :]  = yData/mDataset[:, mca]
                                    n += 1
                            else:
                                n += tmp.shape[1] * tmp.shape[2]
                    if dim0 == 1:
                        self.onProgress(j)
                if dim0 != 1:
                    self.onProgress(i)
            self.onEnd()
        else:
            self.info["McaIndex"] = mcaIndex


        self.info["SourceType"] = SOURCE_TYPE
        self.info["SourceName"] = filelist
        self.info["Size"]       = 1
        self.info["NumberOfFiles"] = 1
        if mcaIndex == 0:
            self.info["FileIndex"] = 1
        else:
            self.info["FileIndex"] = 0
        self.info['McaCalib'] = [ 0.0, 1.0, 0.0]
        self.info['Channel0'] = 0
        shape = self.data.shape
        for i in range(len(shape)):
            key = 'Dim_%d' % (i+1,)
            self.info[key] = shape[i]


    def getDimensions(self, nFiles, nScans, shape, index=None):
        #some body may want to overwrite this
        """
        Returns the shape of the final stack as (Dim0, Dim1, Nchannels)
        """
        if index is None:
            index = -1
        if index == -1:
            index = len(shape) - 1
        if DEBUG:
            print("INDEX = %d" % index)
        #figure out the shape of the stack
        if len(shape) == 0:
            #a scalar?
            raise ValueError("Selection corresponds to a scalar")
        elif len(shape) == 1:
            #nchannels
            nMca = 1
        elif len(shape) == 2:
            if index == 0:
                #npoints x nchannels
                nMca = shape[1]
            else:
                #npoints x nchannels
                nMca = shape[0]
        elif len(shape) == 3:
            if index in [2, -1]:
                #dim1 x dim2 x nchannels
                nMca = shape[0] * shape[1]
            elif index == 0:
                nMca = shape[1] * shape[2]
            else:
                raise IndexError("Only first and last dimensions handled")
        else:
            nMca = 1
            for i in range(len(shape)):
                if i == index:
                    continue
                nMca *= shape[i]
                
        mcaDim = shape[index]
        if DEBUG:
            print("nMca = %d" % nMca)
            print("mcaDim = ", mcaDim)

        # HDF allows to work directly from the files without loading
        # them into memory.
        if (nScans == 1) and (nFiles > 1):
            if nMca == 1:
                #specfile like case
                dim0 = nFiles
                dim1 = nMca * nScans # nScans is 1
            else:
                #ESRF EDF like case
                dim0 = nFiles
                dim1 = nMca * nScans # nScans is 1
        elif (nScans == 1) and (nFiles == 1):
            if nMca == 1:
                #specfile like single mca
                dim0 = nFiles # it is 1
                dim1 = nMca * nScans # nScans is 1
            elif len(shape) == 2:
                dim0 = nFiles # it is 1
                dim1 = nMca * nScans # nScans is 1
            elif len(shape) == 3:
                if index == 0:
                    dim0 = shape[1]
                    dim1 = shape[2]
                else:
                    dim0 = shape[0]
                    dim1 = shape[1]
            else:
                #specfile like multiple mca
                dim0 = nFiles # it is 1
                dim1 = nMca * nScans  # nScans is 1
        elif (nScans > 1)  and (nFiles == 1):
            if nMca == 1:
                #specfile like case
                dim0 = nFiles
                dim1 = nMca * nScans
            elif nMca > 1:
                if len(shape) == 1:
                    #specfile like case
                    dim0 = nFiles
                    dim1 = nMca * nScans
                elif len(shape) == 2:
                    dim0 = nScans
                    dim1 = nMca     #shape[0]
                elif len(shape) == 3:
                    if (shape[0] == 1) or (shape[1] == 1):
                        dim0 = nScans
                        dim1 = nMca
                    else:
                        #The user will have to decide the shape
                        dim0 = 1
                        dim1 = nScans * nMca
                else:
                    #The user will have to decide the shape
                    dim0 = 1
                    dim1 = nScans * nMca
        elif (nScans > 1) and (nFiles > 1):
            dim0 = nFiles
            dim1 = nMca * nScans
        else:
            #I should not reach this point
            raise ValueError("Unhandled case")

        return dim0, dim1, shape[index]

    def onBegin(self, n):
        pass

    def onProgress(self, n):
        pass

    def onEnd(self):
        pass

if __name__ == "__main__":
    import sys