This file is indexed.

/usr/share/pyshared/PyMca/IncoherentScattering.py is in pymca 4.5.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#/*##########################################################################
# Copyright (C) 2004-2011 European Synchrotron Radiation Facility
#
# This file is part of the PyMCA X-ray Fluorescence Toolkit developed at
# the ESRF by the Beamline Instrumentation Software Support (BLISS) group.
#
# This toolkit is free software; you can redistribute it and/or modify it 
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option) 
# any later version.
#
# PyMCA is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# PyMCA; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
# Suite 330, Boston, MA 02111-1307, USA.
#
# PyMCA follows the dual licensing model of Trolltech's Qt and Riverbank's PyQt
# and cannot be used as a free plugin for a non-free program. 
#
# Please contact the ESRF industrial unit (industry@esrf.fr) if this license 
# is a problem for you.
#############################################################################*/
import os
import numpy.oldnumeric as Numeric
from PyMca import ConfigDict
from PyMca import Scofield1973
ElementList= ['H','He','Li','Be','B','C','N','O','F','Ne',
              'Na','Mg','Al','Si','P','S','Cl','Ar','K','Ca','Sc','Ti','V','Cr','Mn','Fe','Co','Ni','Cu','Zn',
     'Ga','Ge','As','Se','Br','Kr',
     'Rb','Sr','Y','Zr','Nb','Mo','Tc','Ru','Rh','Pd','Ag','Cd',
     'In','Sn','Sb','Te','I','Xe','Cs','Ba','La','Ce','Pr','Nd',
     'Pm','Sm','Eu','Gd','Tb','Dy','Ho','Er','Tm','Yb','Lu','Hf',
     'Ta','W','Re','Os','Ir','Pt','Au','Hg','Tl','Pb','Bi','Po','At',
     'Rn','Fr','Ra','Ac','Th','Pa','U','Np','Pu','Am','Cm','Bk','Cf',
     'Es','Fm','Md','No','Lr','Rf','Db','Sg','Bh','Hs','Mt']

dirmod = os.path.dirname(Scofield1973.__file__) 
ffile   = os.path.join(dirmod,"attdata")
ffile   = os.path.join(ffile,"incoh.dict")
if not os.path.exists(ffile):
    #freeze does bad things with the path ...
    dirmod = os.path.dirname(dirmod)
    ffile = os.path.join(dirmod, "attdata")
    ffile = os.path.join(ffile, "incoh.dict")
    if not os.path.exists(ffile):
        if dirmod.lower().endswith(".zip"):
            dirmod = os.path.dirname(dirmod)
            ffile = os.path.join(dirmod,"attdata")
            ffile = os.path.join(ffile, "incoh.dict")
    if not os.path.exists(ffile):
        print("Cannot find file ", ffile)
        raise IOError("Cannot find file %s" % ffile)

COEFFICIENTS = ConfigDict.ConfigDict()
COEFFICIENTS.read(ffile)
xvalues = COEFFICIENTS['ISCADT']['XSVAL']
svalues = Numeric.reshape(COEFFICIENTS['ISCADT']['SCATF'], (100,len(xvalues)))
#svalues = COEFFICIENTS['ISCADT']['SCATF']
#print svalues[100:110]
KEVTOANG = 12.39852000
R0 = 2.82E-13 #electron radius in cm

def getZ(ele):
    if ele in ElementList:
        return float(ElementList.index(ele)+1)
    else:
        return None

def getElementComptonFormFactor(ele, theta, energy):
    return getElementIncoherentScatteringFunction(ele, theta, energy)


def getComptonScatteringEnergy(energy, theta):
    return energy/(1.0 + \
            (energy/511.) * (1 - Numeric.cos(theta*(Numeric.pi/180.0))))

def getElementIncoherentScatteringFunction(ele, theta, energy):
    """
    Usage: 
        getIncoherentScatteringFunction(ele,theta, energy):
    
    ele   - Element
    theta - Scattering angle in degrees
    energy- Photon Energy in keV
    
    This routine calculates the incoherent scattering function 
    in electron units an interpolation to EGS4 tabulation of S(x,Z)/Z
    """
    if ele in ElementList:
        z = getZ(ele)
    else:
        z = float(ele)
    wavelength = KEVTOANG / energy
    sinhalftheta=Numeric.sin(theta*(Numeric.pi/360.0))
    #Hubbel just give this term
    x =  sinhalftheta / wavelength
    
    #print "x old = ",x
    e = energy/511.0
    #Fajardo uses:
    x = x * Numeric.sqrt(1.0 + e* (e+2.0)* pow(sinhalftheta, 2))/ \
            (1.0 + 2.0 * e * pow(sinhalftheta, 2))
    #print "x new = ",x
    
    ilow  = 0
    ihigh = 44
    i     = 22
    while (ihigh - ilow) > 1:
        if x < xvalues[i]:ihigh = i
        else:ilow =i
        i = int((ihigh+ilow)/2)

    if z > 100:
        if ihigh == ilow:
            value = svalues[int(99),ilow]  
        else:
            A = (x - xvalues[ilow])/(xvalues[ihigh]-xvalues[ilow])
            value = ((1.0 - A ) * svalues[int(99),ilow] + \
                    A * svalues[int(99),ihigh])
        value = value * (z/100.)
    else:
        if ihigh == ilow:
            value = svalues[int(z-1),ilow]  
        else:
            A = (x - xvalues[ilow])/(xvalues[ihigh]-xvalues[ilow])
            value = ((1.0 - A ) * svalues[int(z-1),ilow] + \
                    A * svalues[int(z-1),ihigh])
    
    return value



def getElementComptonDifferentialCrossSection(ele, theta, energy, p1=None):
    if p1 is None:p1=0.0
    if (p1 > 1.0) or (p1 < -1):
        raise ValueError(\
        "Invalid degree of linear polarization respect to the scattering plane")
    thetasin2 = pow(Numeric.sin(theta*Numeric.pi/180.0),2)
    thetacos  =  Numeric.cos(theta*Numeric.pi/180.0)
    e = energy/(1.0 + (energy/511.) * (1.0 - thetacos))
    return 0.5 * ((e/energy) + (energy/e) + (p1-1.0) * thetasin2) * \
           pow(R0*(e/energy)*getElementIncoherentScatteringFunction(ele, theta, energy),2)

getElementIncoherentDifferentialCrossSection=\
            getElementComptonDifferentialCrossSection

if __name__ == "__main__":
    import sys
    if len(sys.argv) >  3:
        ele   = sys.argv[1]
        theta = float(sys.argv[2])
        energy= float(sys.argv[3])
        print(getElementComptonFormFactor(ele, theta, energy))    
    else:
        print("Usage:")
        print("python IncoherentScatteringFunction.py Element Theta(deg) Energy(kev)")