This file is indexed.

/usr/share/pyshared/PyMca/MEDFile.py is in pymca 4.5.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#!/usr/bin/python
"""
Simple interface to M. River's Multi-Element MCA Data Format

M. Newville  
"""
import numpy as np
import re

MIN_SLOPE   = 1.e-7

def str_converter(strin, delim=None, converter=None):
    """convert a string of a delimited array to a list"""
    if delim is None: 
        arr = strin.split()
    else:
        arr = re.split(delim, strin)
    conv = converter 
    if hasattr(conv, '__call__'):
        return [conv(elem) for elem in arr]
    else:
        return arr

def str2float(strin, delim=None):
    "string of floats to array of floats"
    return str_converter(strin, delim=delim, converter=float)

def str2int(strin, delim=None):
    "string of integers to array of ints"
    return str_converter(strin, delim=delim, converter=int)

def str2str(strin, delim=None):
    "string to array of strings"
    return str_converter(strin, delim=delim)

class ROI(object):
    "simple Region of Interest"
    def __init__(self, index=0, left=-1, right=-1, name=None, spectra=None):
        self.index = index
        self.left = left
        self.right = right
        self.name = name
        self.spectra = np.array(spectra)
        self.__counts = -1
        
    def __repr__(self):
        return "<ROI('%s' chan:[%i, %i])>" % (self.name, self.left,
                                              self.right)
    def counts(self):
        "total counts in roi"
        if self.spectra is None:
            return None
        return self.spectra[self.left:self.right+1].sum()
            
class MCA(object):
    """ basic MCA spectra"""
    def __init__(self, data=None):
        self.npts = 1
        self.data = data
        self.energy = None
        self.realtime = 0
        self.livetime = 0
        self.deadtime_correction = 1.0
        self.cal_offset = 0
        self.cal_slope  = 0.010
        self.cal_quad   = 0
        self.cal_tth    = 0
        self.rois = []

    def __repr__(self):
        return "<MCA(%i points) %s>" % (self.npts, hex(id(self)))

    def chan2energy(self, i):
        "get energy from a channel number"
        if self.energy is not None:
            self.get_energy()
        return self.energy[i]

    def get_calibration(self):
        "return calibration constants"
        self.cal_slope = max(MIN_SLOPE, self.cal_slope)
        return  (self.cal_offset, self.cal_slope, self.cal_quad)

    def get_energy(self):
        "return full energy array"
        if self.energy is not None:
            return self.energy
        idx = np.arange(self.npts)
        self.cal_slope = max(MIN_SLOPE, self.cal_slope)        
        self.energy = self.cal_offset + idx * (self.cal_slope +
                                               idx * self.cal_quad)
        return self.energy

class MEDFile(object):
    """MultiElement XRF Data File Format
    """
    def __init__(self, filename=None):
        self.default_detector = 0 # "good" detector for energy calibration
        self.env = []
        self.mcas = []
        self.filename = filename
        if filename is not None:
            self.mca_read_file(filename)
            
    def get_calibration(self, detector=None):
        "get calibration constants"
        if detector is None:
            detector = self.default_detector
        return self.mcas[detector].get_calibration()

    def chan2energy(self, i, detector=None):
        "get energy from a channel number"
        if detector is None:
            detector = self.default_detector
        return self.mcas[detector].chan2energy(i)

    def get_energy(self, detector=None):
        "get energy array"
        if detector is None:
            detector = self.default_detector
        return self.mcas[detector].get_energy()

    def get_data(self, detector=None, sum_all=True):
        """ get detector data,
        if sum_all == False, just the 1 array is returned
        if sum_all == True, the sum of all detectors is returned, aligned
                        to the energy of the specified detector"""
        if detector is None:
            detector = self.default_detector

        dat = self.mcas[detector].data
        if sum_all:
            enref = self.mcas[detector].get_energy()
            dat = np.zeros(len(enref))
            for mca in self.mcas:
                et = mca.get_energy()
                dt = mca.data[:]
                dat = dat + np.interp(enref, et, dt)
        return dat

    def mca_read_file(self, fname):
        "read MCA data file"
        self.filename = fname
        f     = open(fname)
        lines = f.readlines()
        f.close()

        mode   = 'HEADER'
        nelem = 1
        # tmp data for data and headers, and rois
        tmpdat = []
        header = {}
        _roi_0, _roi_1, _roi_n = {}, {}, {}
        for line in lines:
            line  = line.strip()
            if len(line) < 1:
                continue
            if mode == 'DATA': # data mode
                tmpdat.append(str2int(line))
            else:
                words = [x.strip() for x in line.split(' ', 1)]
                if len(words) < 2:  # note that 'Data:' line as 1 word.
                    words.append('')
                tag, val = words[0], words[1]

                tag = tag.replace(':', '').lower()
                if tag == 'data':
                    mode = 'DATA'
                elif tag == 'elements':
                    nelem = int(val)
                elif tag in ('rois', 'real_time', 'live_time', 'cal_offset',
                             'cal_slope', 'cal_quad', 'two_theta'):
                    header[tag] = str2float(val)
                elif tag == 'environment':
                    self.env.append(val)
                elif tag.startswith('roi_'):
                    x, sroi, item = tag.split('_')
                    iroi = int(sroi)
                    if item == "label":
                        labels = str2str(val, delim='\&')
                        if labels[-1] == '':
                            labels = labels[:-1]
                        _roi_n[iroi] = labels
                    elif item == "left":
                        _roi_0[iroi] = str2int(val)
                    elif item == "right":
                        _roi_1[iroi] = str2int(val)
                else:
                    header[tag] = val
                
        #  find first valid detector, identify bad detectors
        self.mcas = [MCA() for i in range(nelem)]
        tmpdat  = np.transpose(np.array(tmpdat))

        for imca, mca in enumerate(self.mcas):
            mca.npts       = int(header['channels'])
            mca.nrois      = int(header['rois'][imca])
            mca.start_time = header['date']
            mca.realtime   = header['real_time'][imca]
            mca.livetime   = header['live_time'][imca]
            mca.cal_offset = header['cal_offset'][imca]
            mca.cal_slope  = header['cal_slope'][imca]
            mca.cal_quad   = header['cal_quad'][imca]
            mca.cal_tth    = header['two_theta'][imca]
            
            mca.data = 1 * tmpdat[imca, :]
            for iroi in _roi_n:
                name   = _roi_n[iroi][imca].strip()
                ileft  = _roi_0[iroi][imca]
                iright = _roi_1[iroi][imca]                
                mca.rois.append(ROI(index=iroi, left=ileft,
                                    right=iright, name=name,
                                    spectra=mca.data))
                    

    def write_ascii(self, fname, elem=None, sum_all=True):
        """write data to ASCII column file"""
        out = []
        
        out.append("# XRF data from %s\n" % (self.filename))
        if len(self.env)>0:
            out.append("# Extra PVs:\n")
            for i in self.env:
                out.append("#     %s\n" % i)
        out.append("#-------------------------\n")
        out.append("# energy  counts\n")

        en = self.get_energy()
        if elem is not None:
            dat = self.get_data(detector=elem)
        elif sum_all:
            dat = self.get_data()
        for i in ("%8.4f  %i\n" % (ei, di) for ei, di in zip(en, dat)):
            out.append("%s"%i)

        f = open(fname, "w+")
        f.writelines(out)
        f.close()

if __name__ == '__main__':
    try:
        import pylab
        HAS_PYLAB = True
    except ImportError:
        HAS_PYLAB = False
    xrf = MEDFile('test.xrf')

    energy = xrf.get_energy()

    d0 = xrf.get_data(detector=0, sum_all=False)
    d1 = xrf.get_data(detector=1, sum_all=False)
    d2 = xrf.get_data(detector=2, sum_all=False)
    d3 = xrf.get_data(detector=3, sum_all=False)
    dsum = xrf.get_data(detector=0, sum_all=True)

    xrf.write_ascii('test.dat')

    print(' ROIs from Element 2:')
    print(' ------------------')
    print(' Name |  Sum ')
    for roi in xrf.mcas[1].rois:
        print(' %s = %d ' % (roi.name, roi.counts()))

    if HAS_PYLAB:
        pylab.plot(energy, dsum)
        pylab.show()