/usr/share/pyshared/PyMca/NNMAModule.py is in pymca 4.5.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 | __author__ = "Uwe Schmitt uschmitt@mineway.de, wrapped by V.A. Sole - ESRF"
__doc__ = """
This module is a simple wrapper to the py_nnma module of Uwe Schmitt (uschmitt@mineway.de)
in order to integrate it into PyMca. What follows is the documentation of py_nnma
py_nnma: python modules for nonnegative matrix approximation (NNMA)
(c) 2009 Uwe Schmitt, uschmitt@mineway.de
NNMA minimizes dist(Y, A X)
where: Y >= 0, m x n
A >= 0, m x k
X >= 0, n x k
k < min(m,n)
dist(A,B) can be || A - B ||_fro
or KL(A,B)
This moudule provides the following functions:
NMF, NMFKL, SNMF, RRI, ALS, GDCLS, GDCLS_L1, FNMAI, FNMAI_SPARSE,
NNSC and FastHALS
The common parameters when calling such a function are:
input:
Y -- the matrix for decomposition, maybe dense
from numpy or sparse from scipy.sparse
package
k -- number of componnets to estimate
Astart
Xstart -- matrices to start iterations. Maybe None
for using random start matrices.
eps -- termination swell value
maxcount -- max number of iterations to be performed
verbose -- if False: produce no output durint interations
if integer: give all 'verbose' itetations some
output about current state of iterations
output:
A, X -- result matrices of algorithm
obj -- value of objective function of last iteration
count -- number of iterations done
converged -- flag: indicates if iterations stoped within
max number of iterations
The following extra parameters exist depending on algorithm:
RRI : damping parameter 'psi' (default: 1e-12)
SNMF : sparsity parameter 'sparse_par' (default: 0)
ALS : regularization parameter 'regul' for stabilizing iterations
(default value 0). needed if objective value jitters.
GCDLS : 'regul' for l2-smoothness of X (default 0)
GDCLS_L1 : 'regul' for l1-smoothness of X (default 0)
FNMAI : 'stabil' for stabilizing algorithm (default value 1e-12)
'alpha' for stepsize (default value 0.1)
'tau' for number of inner iterations (default value 2)
FNMAI_SPARSE : as FNMAI plus
'regul' for l1-smoothness of X (default 0)
NNSC : 'alpha' for stepsize of gradient update of A
'sparse_par' for sparsity
This module is based on:
- Daniel D. Lee and H. Sebastian Seung:
"Algorithms for non-negative matrix factorization",
in Advances in Neural Information Processing 13
(Proc. NIPS*2000) MIT Press, 2001.
"Learning the parts of objects by non-negative matrix
factorization",
Nature, vol. 401, no. 6755, pp. 788-791, 1999.
- A. Cichocki and A-H. Phan:
"Fast local algorithms for large scale Nonnegative Matrix and
Tensor Factorizations",
IEICE Transaction on Fundamentals,
in print March 2009.
- P. O. Hoyer
"Non-negative Matrix Factorization with sparseness
constraints",
Journal of Machine Learning Research, vol. 5, pp. 1457-1469,
2004.
- Dongmin Kim, Suvrit Sra,Inderjit S. Dhillon:
"Fast Newton-type Methods for the Least Squares Nonnegative Matrix
Approximation Problem"
SIAM Data Mining (SDM), Apr. 2007
- Ngoc-Diep Ho:
dissertation from
http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-06052008-235205/
#############################################################################
Copyright (c) 2009 Uwe Schmitt, uschmitt@mineway.de
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution. Neither the name of the <ORGANIZATION>
* nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific
* prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
import py_nnma
import numpy
try:
import mdp
if mdp.__version__ >= '2.6':
MDP = True
else:
MDP = False
except:
MDP = False
DEBUG = 0
function_list = ['FNMAI', 'ALS', 'FastHALS', 'GDCLS']
function_dict = {"NNSC": py_nnma.NNSC,
"FNMAI_SPARSE": py_nnma.FNMAI_SPARSE,
"FNMAI": py_nnma.FNMAI,
"GDCLS_L1": py_nnma.GDCLS_L1,
"GDCLS": py_nnma.GDCLS,
"ALS": py_nnma.ALS,
"NMFKL": py_nnma.NMFKL,
"NMF": py_nnma.NMF,
"RRI": py_nnma.RRI,
"FastHALS": py_nnma.FastHALS,
"SNMF": py_nnma.SNMF,
}
def nnma(stack, ncomponents, binning=None,
function=None, eps=5e-5, verbose=DEBUG, maxcount=1000, kmeans=False):
if kmeans and (not MDP):
raise ValueError("K Means not supported")
#I take the defaults for the other parameters
param = dict(alpha=.1, tau=2, regul=1e-2, sparse_par=1e-1, psi=1e-3)
if function is None:
function = 'FNMAI'
nnma_function = function_dict[function]
if binning is None:
binning = 1
if hasattr(stack, "info") and hasattr(stack, "data"):
data = stack.data
else:
data = stack
oldShape = data.shape
if len(data.shape) == 3:
r, c, N = data.shape
if isinstance(data, numpy.ndarray):
data.shape = r*c, N
else:
r, N = data.shape
c = 1
if isinstance(data, numpy.ndarray):
if binning > 1:
data=numpy.reshape(data,[data.shape[0], data.shape[1]/binning, binning])
data=numpy.sum(data , axis=-1)
N=N/binning
else:
oldData = data
N = int(N/binning)
try:
data = numpy.zeros((r, c, N), oldData.dtype)
except MemoryError:
try:
data = numpy.zeros((r, c, N), numpy.float32)
except MemoryError:
text = "NNMAModule only works properly on numpy arrays.\n"
text += "Memory Error: Higher binning may help."
raise TypeError(text)
if binning == 1:
if len(oldShape) == 3:
for i in range(r):
data[i,:,:] = oldData[i,:,:]
data.shape = r * c, N
else:
data.shape = r * c, N
for i in range(r*c):
data[i,:] = oldData[i,:]
else:
if len(oldShape) == 3:
for i in range(r):
tmpData = oldData[i,:,:]
tmpData.shape = c, N, binning
data[i,:,:] = numpy.sum(tmpData, axis=-1)
data.shape = r * c, N
else:
data.shape = r * c, N
for i in range(r*c):
tmpData = oldData[i,:]
tmpData.shape = N, binning
data[i,:] = numpy.sum(tmpData, axis=-1)
#mindata = data.min()
#numpy.add(data, -mindata+1, data)
#I do not know the meaning of these paramenters
#py_nnma.scale(newdata)
param = dict(alpha=.1, tau=2, regul=1e-2, sparse_par=1e-1, psi=1e-3)
#Start tolerance
#1E+3 is conservative/fast
#1E-3 is probably slow
start_ncomponents = min(3, ncomponents)
Astart = None
Xstart = None
#for i in range(start_ncomponents, ncomponents):
converged = False
while not converged:
A, X, obj, count, converged = nnma_function(data,
ncomponents,
Astart,
Xstart,
eps=eps,
maxcount=maxcount,
verbose=verbose,
**param)
if not converged:
print("WARNING: Possible problems converging")
#if binning > 1:
# numpy.add(data, mindata-1, data)
#data.shape = oldShape
images = A.T
if 0:
images.shape = ncomponents, r, c
return images, numpy.ones((ncomponents), numpy.float32),X
#order and scale images according to Gerd Wellenreuthers' recipe
#normalize all maps to be in the range [0, 1]
for i in range(ncomponents):
norm_factor = numpy.max(images[i, :])
if norm_factor > 0:
images[i, :] *= 1.0/norm_factor
X[i, :] *= norm_factor
#sort NNMA-spectra and maps
total_nnma_intensity = []
for i in range(ncomponents):
total_nnma_intensity += [[numpy.sum(images[i,:])*\
numpy.sum(X[i,:]), i]]
sorted_idx = [item[1] for item in sorted(total_nnma_intensity)]
sorted_idx.reverse()
#original data intensity
original_intensity = numpy.sum(data)
#final values
if kmeans:
n_more = 1
else:
n_more = 0
new_images = numpy.zeros((ncomponents + n_more, r*c), numpy.float32)
new_vectors = numpy.zeros((X.shape[0]+n_more, X.shape[1]), numpy.float32)
values = numpy.zeros((ncomponents+n_more,), numpy.float32)
for i in range(ncomponents):
idx = sorted_idx[i]
if 1:
new_images[i, :] = images[idx, :]
else:
#imaging the projected sum gives same results
Atmp = images[idx, :]
Atmp.shape = -r*c, 1
Xtmp = X[idx,:]
Xtmp.shape = 1, -1
new_images[i, :] = numpy.sum(numpy.dot(Atmp, Xtmp), axis=1)
new_vectors[i,:] = X[idx,:]
values[i] = 100.*total_nnma_intensity[idx][0]/original_intensity
new_images.shape = ncomponents + n_more, r, c
if kmeans:
classifier = mdp.nodes.KMeansClassifier(ncomponents)
for i in range(ncomponents):
classifier.train(new_vectors[i:i+1])
k = 0
for i in range(r):
for j in range(c):
spectrum = data[k:k+1,:]
new_images[-1, i,j] = classifier.label(spectrum)[0]
k += 1
return new_images, values, new_vectors
if __name__ == "__main__":
import EDFStack
import EdfFile
import os
import sys
import time
inputfile = "D:\DATA\COTTE\ch09\ch09__mca_0005_0000_0000.edf"
if len(sys.argv) > 1:
inputfile = sys.argv[1]
print(inputfile)
elif os.path.exists(inputfile):
print("Using a default test case")
else:
print("Usage:")
print("python NNMAModule.py indexed_edf_stack")
sys.exit(0)
stack = EDFStack.EDFStack(inputfile)
r0, c0, n0 = stack.data.shape
ncomponents = 10
outfile = os.path.basename(inputfile)+"ICA.edf"
e0 = time.time()
images, eigenvalues, eigenvectors = nnma(stack.data, ncomponents,
binning=1)
print("elapsed = %f" % (time.time() - e0))
if os.path.exists(outfile):
os.remove(outfile)
f = EdfFile.EdfFile(outfile)
for i in range(ncomponents):
f.WriteImage({}, images[i,:])
sys.exit(0)
|