This file is indexed.

/usr/share/pyshared/PyMca/PyMcaEPDL97.py is in pymca 4.5.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
#/*##########################################################################
# Copyright (C) 2004-2010 European Synchrotron Radiation Facility
#
# This file is part of the PyMCA X-ray Fluorescence Toolkit developed at
# the ESRF by the Beamline Instrumentation Software Support (BLISS) group.
#
# This toolkit is free software; you can redistribute it and/or modify it 
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option) 
# any later version.
#
# PyMCA is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# PyMCA; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
# Suite 330, Boston, MA 02111-1307, USA.
#
# PyMCA follows the dual licensing model of Trolltech's Qt and Riverbank's PyQt
# and cannot be used as a free plugin for a non-free program. 
#
# Please contact the ESRF industrial unit (industry@esrf.fr) if this license 
# is a problem for you.
#############################################################################*/
__doc__= "Interface to the PyMca EPDL97 description" 
import os
import sys
try:
    from PyMca import specfile
except ImportError:
    #this is needed for frozen versions
    #print "Importing specfile from local directory"
    import specfile
import numpy
#import copy
log = numpy.log
exp = numpy.exp
ElementList = ['H', 'He', 
            'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne',
            'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar',
            'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe',
            'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se',
            'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo',
            'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn',
            'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce',
            'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 
            'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 
            'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 
            'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 
            'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 
            'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 
            'Bh', 'Hs', 'Mt']

dirmod = os.path.dirname(__file__)
EPDL97_FILE = os.path.join(dirmod,"EPDL97_CrossSections.dat")
if not os.path.exists(EPDL97_FILE):
    #freeze does bad things with the path ...
    dirmod = os.path.dirname(dirmod)
    EPDL97_FILE = os.path.join(dirmod,
                               os.path.basename(EPDL97_FILE))
    if not os.path.exists(EPDL97_FILE):
        if dirmod.lower().endswith(".zip"):
            dirmod = os.path.dirname(dirmod)
            EPDL97_FILE = os.path.join(dirmod,
                               os.path.basename(EPDL97_FILE))
    if not os.path.exists(EPDL97_FILE):
        raise IOError("Cannot find the EPDL97 specfile")

EADL97_FILE = os.path.join(dirmod,"EADL97_BindingEnergies.dat")
if not os.path.exists(EADL97_FILE):
    #freeze does bad things with the path ...
    EADL97_FILE = os.path.join(os.path.dirname(dirmod),
                               os.path.basename(EADL97_FILE))
    if not os.path.exists(EADL97_FILE):
        raise IOError("Cannot find the EADL97 specfile")


EPDL97_DICT = {}
for element in ElementList:
    EPDL97_DICT[element] = {}

#initialize the dictionnary, for the time being compatible with PyMca 4.3.0
EPDL97_DICT = {}
for element in ElementList:
    EPDL97_DICT[element] = {}
    EPDL97_DICT[element]['binding'] = {}
    EPDL97_DICT[element]['EPDL97']  = {}
    EPDL97_DICT[element]['original'] = True

#fill the dictionnary with the binding energies
def _initializeBindingEnergies():
    #read the specfile data
    sf = specfile.Specfile(EADL97_FILE)
    scan = sf[0]
    labels = scan.alllabels()
    data = scan.data()
    scan = None
    sf = None
    i = -1
    for element in ElementList:
        if element == 'Md':
            break
        i += 1
        EPDL97_DICT[element]['binding'] = {}
        for j in range(len(labels)):
            if j == 0:
                #this is the atomic number
                continue
            label = labels[j].replace(" ","").split("(")[0]
            EPDL97_DICT[element]['binding'][label] = data[j, i]

_initializeBindingEnergies()

def setElementBindingEnergies(element, ddict):
    """
    Allows replacement of the element internal binding energies by a different
    set of energies. This is made to force this implementaticon of EPDL97 to
    respect other programs absorption edges. Data will be extrapolated when
    needed. WARNING: Coherent resonances are not replaced.
    """
    if len(EPDL97_DICT[element]['EPDL97'].keys()) < 2:
        _initializeElement(element)
    EPDL97_DICT[element]['original'] = False
    EPDL97_DICT[element]['binding']={}
    if 'binding' in ddict:
        EPDL97_DICT[element]['binding'].update(ddict['binding'])
    else:
        EPDL97_DICT[element]['binding'].update(ddict)

def _initializeElement(element):
    """
    _initializeElement(element)
    Supposed to be of internal use.
    Reads the file and loads all the relevant element information contained
    int the EPDL97 file into the internal dictionnary.
    """
    #read the specfile data
    sf = specfile.Specfile(EPDL97_FILE)
    scan_index = ElementList.index(element)
    if scan_index > 99:
        #just to avoid a crash
        #I do not expect any fluorescent analysis of these elements ...
        scan_index = 99
    scan = sf[scan_index]
    labels = scan.alllabels()
    data = scan.data()
    scan = None

    #fill the information into the dictionnary
    i = -1
    for label0 in labels:
        i += 1
        label = label0.lower()
        #translate the label to the PyMca keys
        if ('coherent' in label) and ('incoherent' not in label):
            EPDL97_DICT[element]['EPDL97']['coherent'] = data[i, :]
            EPDL97_DICT[element]['EPDL97']['coherent'].shape = -1
            continue
        if ('incoherent' in label) and ('plus' not in label):
            EPDL97_DICT[element]['EPDL97']['compton'] = data[i, :]
            EPDL97_DICT[element]['EPDL97']['compton'].shape = -1
            continue
        label = label.replace(" ","").split("(")[0]
        if 'energy' in label:
            EPDL97_DICT[element]['EPDL97']['energy'] = data[i, :]
            EPDL97_DICT[element]['EPDL97']['energy'].shape = -1
            continue
        if 'photoelectric' in label:
            EPDL97_DICT[element]['EPDL97']['photo'] = data[i, :]
            EPDL97_DICT[element]['EPDL97']['photo'].shape = -1
            #a reference should not be expensive ...
            EPDL97_DICT[element]['EPDL97']['photoelectric'] =\
                                EPDL97_DICT[element]['EPDL97']['photo']
            continue
        if 'total' in label:
            EPDL97_DICT[element]['EPDL97']['total'] = data[i, :]
            EPDL97_DICT[element]['EPDL97']['total'].shape = -1
            continue
        if label[0].upper() in ['K', 'L', 'M']:
            #for the time being I do not use the other shells in PyMca
            EPDL97_DICT[element]['EPDL97'][label.upper()] = data[i, :]
            EPDL97_DICT[element]['EPDL97'][label.upper()].shape = -1
            continue
    EPDL97_DICT[element]['EPDL97']['pair'] = 0.0 * EPDL97_DICT[element]['EPDL97']['energy']
    EPDL97_DICT[element]['EPDL97']['total'] =\
            EPDL97_DICT[element]['EPDL97']['coherent']+\
            EPDL97_DICT[element]['EPDL97']['compton']+\
            EPDL97_DICT[element]['EPDL97']['pair']+\
            EPDL97_DICT[element]['EPDL97']['photo']
    EPDL97_DICT[element]['EPDL97']['all other']=1 *\
            EPDL97_DICT[element]['EPDL97']['photo']
    atomic_shells = ['K', 'L1', 'L2', 'L3', 'M1', 'M2', 'M3', 'M4', 'M5']
    for key in atomic_shells:
        EPDL97_DICT[element]['EPDL97']['all other']-=\
                EPDL97_DICT[element]['EPDL97'][key]

    #take care of rounding problems
    EPDL97_DICT[element]['EPDL97']['all other']\
        [EPDL97_DICT[element]['EPDL97']['all other'] < 0.0] = 0.0

def getElementCrossSections(element, energy=None, forced_shells=None):
    """
    getCrossSections(element, energy, excited_shells=None)
    Returns total and partial cross sections of element at the specified
    energies. If excited_shells are not specified, it uses the internal
    binding energies of EPDL97 for all shells. If excited_shells is specified,
    it enforces excitation of the relevant shells via log-log extrapolation
    if needed.
    """
    if forced_shells is None:
        forced_shells = []
    if element not in ElementList:
        raise ValueError("Invalid chemical symbol %s" % element)
    if len(EPDL97_DICT[element]['EPDL97'].keys()) < 2:
        _initializeElement(element)

    if energy is None and EPDL97_DICT[element]['original']:
        return EPDL97_DICT[element]['EPDL97']
    elif energy is None:
        energy = EPDL97_DICT[element]['EPDL97']['energy']

    try:
        n = len(energy)
    except TypeError:
        energy = numpy.array([energy])        
    if type(energy) in [type(1), type(1.0)]:
        energy = numpy.array([energy])
    elif type(energy) in [type([]), type((1,))]:
        energy = numpy.array(energy)

    binding = EPDL97_DICT[element]['binding']
    wdata = EPDL97_DICT[element]['EPDL97']
    ddict = {}
    ddict['energy']     = energy
    ddict['coherent']   = 0.0 * energy
    ddict['compton']    = 0.0 * energy
    ddict['photo']      = 0.0 * energy
    ddict['pair']       = 0.0 * energy
    ddict['all other']  = 0.0 * energy
    ddict['total']      = 0.0 * energy
    atomic_shells = ['K', 'L1', 'L2', 'L3', 'M1', 'M2', 'M3', 'M4', 'M5']
    for key in atomic_shells:
        ddict[key] = 0.0 * energy

    #find interpolation point
    for i in range(len(energy)):
        x = energy[i]
        if x > wdata['energy'][-2]:
            #take last value or extrapolate?
            print("Warning: Extrapolating data at the end")
            j1 = len(wdata['energy']) - 1 
            j0 = j1 - 1
        elif x < wdata['energy'][0]:
            #take first value or extrapolate?
            print("Warning: Extrapolating data at the beginning")
            j1 = 1 
            j0 = 0
        else:
            j0 = numpy.max(numpy.nonzero(wdata['energy'] <= x), axis=1)
            j1 = j0 + 1
        x0 = wdata['energy'][j0]
        x1 = wdata['energy'][j1]

        #coherent and incoherent
        for key in ['coherent', 'compton', 'all other']:
            y0 = wdata[key][j0]
            y1 = wdata[key][j1]
            #if key == 'all other':
            #    print "energy = ", x
            #    print "x0 = ", x0
            #    print "x1 = ", x1
            #    print 1, y0
            #    print 2, y1
            if (y0 > 0) and (y1 > 0):
                ddict[key][i] = exp((log(y0) * log(x1/x) +\
                                 log(y1) * log(x/x0))/log(x1/x0))
            

        #partial cross sections
        for key in atomic_shells:
            y0 = wdata[key][j0]
            if (y0 > 0.0) and (x >= binding[key]):
                #standard way
                y1 = wdata[key][j1]
                ddict[key][i] = exp((log(y0) * log(x1/x) +\
                                 log(y1) * log(x/x0))/log(x1/x0))
            elif (forced_shells == []) and (x < binding[key]):
                continue
            elif (key in forced_shells) or (x >= binding[key]):
                l = numpy.nonzero(wdata[key] > 0.0)
                if not len(l[0]):
                    continue
                j00 = numpy.min(l)
                j01 = j00 + 1
                x00 = wdata['energy'][j00]
                x01 = wdata['energy'][j01]
                y0 = wdata[key][j00]
                y1 = wdata[key][j01]
                ddict[key][i] = exp((log(y0) * log(x01/x) +\
                                 log(y1) * log(x/x00))/log(x01/x00))
                                    
        for key in ['all other'] + atomic_shells:            
            ddict['photo'][i] += ddict[key][i]

        for key in ['coherent', 'compton', 'photo']:
            ddict['total'][i] += ddict[key][i]
    for key in ddict.keys():
        ddict[key] = ddict[key].tolist()
    return ddict        


def getPhotoelectricWeights(element, shelllist, energy, normalize = None, totals = None):
    """
    getPhotoelectricWeights(element,shelllist,energy,normalize=None,totals=None)
    Given a certain list of shells and one excitation energy, gives back the ratio
    mu(shell, energy)/mu(energy) where mu refers to the photoelectric mass attenuation
    coefficient.
    The special shell "all others" refers to all the shells not in the K, L or M groups.
    Therefore, valid values for the items in the shellist are:
        'K', 'L1', 'L2', 'L3', 'M1', 'M2', 'M3', 'M4', 'M5', 'all other'
    For instance, for the K shell, it is the equivalent of (Jk-1)/Jk where Jk is the k jump.
    If normalize is None or True, normalizes the output to the shells given in shelllist.
    If totals is True, gives back the a dictionnary with all the mass attenuation coefficients
    used in the calculations.
    """
    if normalize is None:
        normalize = True
        
    if totals is None:
        totals = False

    #it is not necessary to force shells because the proper way to work is to force this
    #module to respect a given set of binding energies.
    ddict = getElementCrossSections(element, energy=energy, forced_shells=None)

    w = []
    d = ddict['photo'][0]
    for key in shelllist:
        if d > 0.0:
            wi = ddict[key][0]/d
        else:
            wi = 0.0
        w += [wi]

    if normalize:
        total = sum(w)
        for i in range(len(w)):
            if total > 0.0:
                w[i] = w[i]/total
            else:
                w[i] = 0.0

    if totals:
        return w, ddict
    else:
        return w