This file is indexed.

/usr/share/pyshared/PyMca/PyMcaHKLImageWindow.py is in pymca 4.5.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#/*##########################################################################
# Copyright (C) 2004-2011 European Synchrotron Radiation Facility
#
# This file is part of the PyMCA X-ray Fluorescence Toolkit developed at
# the ESRF by the Beamline Instrumentation Software Support (BLISS) group.
#
# This toolkit is free software; you can redistribute it and/or modify it 
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option) 
# any later version.
#
# PyMCA is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# PyMCA; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
# Suite 330, Boston, MA 02111-1307, USA.
#
# PyMCA follows the dual licensing model of Trolltech's Qt and Riverbank's PyQt
# and cannot be used as a free plugin for a non-free program. 
#
# Please contact the ESRF industrial unit (industry@esrf.fr) if this license 
# is a problem for you.
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
import sys
import numpy
from PyMca import PyMcaImageWindow
from PyMca import SixCircle

arctan = numpy.arctan

DEBUG = 0

class PyMcaHKLImageWindow(PyMcaImageWindow.PyMcaImageWindow):
    def __init__(self, *var, **kw):
        PyMcaImageWindow.PyMcaImageWindow.__init__(self, *var, **kw)
        self._HKLOn = False

    def _graphSignal(self, ddict):
        if (ddict['event'] != "MouseAt") or (not self._HKLOn):
            return PyMcaImageWindow.PyMcaImageWindow._graphSignal(self, ddict)

        if self._imageData is None:
            self.graphWidget.setInfoText("    H = ???? K = ???? L = ???? I = ????")
            return

        #pixel coordinates
        x = round(ddict['y'])
        if x < 0: x = 0
        y = round(ddict['x'])
        if y < 0: y = 0
        limits = self._imageData.shape
        x = min(int(x), limits[0]-1)
        y = min(int(y), limits[1]-1)
        z = self._imageData[x, y]

        text = "   X = %d Y = %d Z = %.7g " % (y, x, z)

        info = self._getHKLInfoFromWidget()

        toDeg = 180.0/numpy.pi

        phi = info['phi']
        chi = info['chi']
        theta = info['theta']

        if 0:
            # delta in vertical (following BM28)
            # gamma in horizontal (following BM28)
            deltaH = toDeg * numpy.arctan((x - info['pixel_zero_h']) *\
                        (info['pixel_size_h']/info['distance']))
        
            deltaV = toDeg *arctan((y - info['pixel_zero_v'])*\
                        (info['pixel_size_v']/info['distance']))
            if 0:
               #original
               gamma = info['gamma'] + deltaH
               delta = info['delta'] - deltaV
            else:
               #MarCCD settings
               gamma = info['gamma'] - deltaV
               delta = info['delta'] - deltaH            
           #end of BM28 customization
        else:
	    #ID03
            deltaH = toDeg * numpy.arctan((x - info['pixel_zero_v']) *\
                        (info['pixel_size_v']/info['distance']))
        
            deltaV = toDeg *arctan((y - info['pixel_zero_h'])*\
                        (info['pixel_size_h']/info['distance']))
	    #delta in horizontal
	    #gamma in vertical
            gamma = info['gamma'] - deltaH
            delta = info['delta'] - deltaV
            if 0:
                #ID03 test for EH1
                wavelength = 1.03321027
                ub = [1.0, 0.0, 0.0, 
                      0.0, 1.0, 0.0,
                      0.0, 0.0, 1.0]
                ub[0] = 0.060082400000000001
                ub[1] = 0.054556500000000001
                ub[2] = -0.92985700000000004
                ub[3] =  -1.5089399999999999
                ub[4] =  -2.61991
                ub[5] =  -0.0203886
                ub[6] =  -2.1539600000000001
                ub[7] =  0.230518
                ub[8] = -0.011654299999999999
                delta, theta, chi, phi, mu, gamma = 44.0035, -92.968, 90.715,\
                                                    1.26, 0.3, 0.578
                print(" Expected value = ", 1, 1, 0.1)
        mu    = info['mu']
        wavelength = info['lambda']
        ub = info['ub']

        if 0:
            #This should always give 1 1 1 
            wavelength = 0.363504
            ub = [1.0, 0.0, 0.0, 
                  0.0, 1.0, 0.0,
                  0.0, 0.0, 1.0]
            ub[0] = -4.080
            ub[1] =  0.000
            ub[2] =  0.000
            ub[3] =  0.000
            ub[4] =  4.080
            ub[5] =  0.000
            ub[6] =  0.000
            ub[7] =  0.000
            ub[8] = -4.080
            delta, theta, chi, phi, mu, gamma = 23.5910, 47.0595, -135.,\
                                                0.0, 0.0, 0.0

        HKL = SixCircle.getHKL(wavelength,
                               ub,
                               phi=phi,
                               chi=chi,
                               theta=theta,
                               gamma=gamma,
                               delta=delta,
                               mu=mu)
        HKL.shape = -1
        text += "H = %.3f " % HKL[0]
        text += "K = %.3f " % HKL[1]
        text += "L = %.3f " % HKL[2]
        self.graphWidget.setInfoText(text)


    def _getHKLInfoFromWidget(self):
        ddict = {}
        ddict['lambda'] = 1.0           # In Angstroms   
        ddict['distance'] = 1000.       # Same units as pixel size
        ddict['pixel_size_h'] = 0.080   # Same units as distance
        ddict['pixel_size_v'] = 0.080   # Same units as distance
        ddict['pixel_zero_h'] = 1024.   # In pixel units (float)
        ddict['pixel_zero_v'] = 1024.   # In pixel units (float)
        ddict['orientation'] = 0
        ddict['ub'] = [1.0, 0.0, 0.0,
                       0.0, 1.0, 0.0,
                       0.0, 0.0, 1.0]
        ddict['phi'] = 0.0
        ddict['chi'] = 0.0 
        ddict['theta'] = 0.0
        ddict['gamma'] = 0.0
        ddict['delta'] = 0.0
        ddict['mu']    = 0.0

        legend = self.dataObjectsList[0]
        dataObject = self.dataObjectsDict[legend]
        info = dataObject.info

        #try to get the information from the motors
        motPos = info.get('motor_pos', "")
        motMne = info.get('motor_mne', "")
        motPos = motPos.split()
        motMne = motMne.split()
        if len(motPos) == len(motMne):
            idx = -1
            for mne in motMne:
                idx += 1
                if mne.upper() in ['ENERGY', 'NRJ']:
                    energy = float(motPos[idx])
                    ddict['lambda'] = 12.39842 / energy
                    continue
                if mne in ['phi', 'chi', 'mu']:
                    ddict[mne] = float(motPos[idx])
                    continue
                if mne in ['th', 'theta']:
                    ddict['theta'] = float(motPos[idx])
                    continue
                if mne in ['del', 'delta', 'tth', 'twotheta']:
                    ddict['delta'] = float(motPos[idx])
                    continue
                if mne in ['gam', 'gamma']:
                    ddict['gamma'] = float(motPos[idx])
                    continue

        #and update it from the counters
        cntPos = info.get('counter_pos', "").split()
        cntMne = info.get('counter_mne', "").split()
        cntInfo = {}
        if len(cntPos) == len(cntMne):
            for i in range(len(cntMne)):
                cntInfo[cntMne[i]] = cntPos[i]
            
        for key in cntInfo.keys():
            # diffractometer
            if key in ['phicnt']:
                ddict['phi'] = float(cntInfo[key])
                continue
            if key in ['chicnt']:
                ddict['chi'] = float(cntInfo[key])
                continue
            if key in ['thcnt', 'thetacnt']:
                ddict['theta'] = float(cntInfo[key])
                continue
            if key in ['tthcnt'] and ('delcnt' not in cntInfo.keys()):
                #Avoid ID03 trap because they have delcnt and tthcnt ...
                ddict['delta'] = float(cntInfo[key])
                continue
            if key in ['delcnt', 'deltacnt']:
                ddict['delta'] = float(cntInfo[key])
                continue
            if key in ['gamcnt', 'gammacnt']:
                ddict['gamma'] = float(cntInfo[key])
                continue
            if key in ['mucnt']:
                ddict['mu'] = float(cntInfo[key])
                continue

        for key in info.keys():
            # UB matrix
            if key.upper() in ['UB_POS']:
                ddict['ub'] = [float(x) for x in info[key].split()]
                continue

            # direct beam
            if key in ['beam_x', 'pixel_zero_x']:
                ddict['pixel_zero_h'] = float(info[key])
                continue
            if key in ['beam_y', 'pixel_zero_y']:
                ddict['pixel_zero_v'] = float(info[key])
                continue

            #sample to direct beam distance
            if key in ['detector_distance', 'd_sample_det']:
                ddict['distance'] = float(info[key])
                continue

            #pixel sizes
            if key in ['pixel_size_x']:
                ddict['pixel_size_h'] = float(info[key])
                continue

            if key in ['pixel_size_y']:
                ddict['pixel_size_v'] = float(info[key])
                continue

            #wave length
            if key in ['source_wavelength']:
                ddict['lambda'] = float(info[key])
                continue

        if DEBUG:
            for key in ddict.keys():
                print(key, ddict[key])

        return ddict